2015

  1. E. Heifets, E.A. Kotomin, A.A. Bagaturyants, and J. Maier, Ab initio study of BiFeO3: Thermodynamic stability conditions. - J. Phys. Chem. Lett., 2015, 6, p. 2847−2851. pdf Impact Factor: 7.46

  2. T.S. Bjørheim, E.A. Kotomin, and J. Maier,  Hydration entropy of BaZrO3 from first principles phonon calculations. - J. Mater. Chem. A, 2015, 3, p. 7639–7648. pdf IF: 7.44

  3. S. PiskunovO. Lisovski, J. Begens, D. BocharovYu.F. Zhukovskii, M. Wessel, and E. Spohr, C‑, N‑, S‑, and Fe-doped TiO2 and SrTiO3 nanotubes for visible-light-driven photocatalytic water splitting: Prediction from first principles. - J. Phys. Chem. C, 2015, 119, p. 18686−18696. pdf IF: 4.77

  4. T.S. Bjørheim, M. Arrigoni, D. GryaznovE.A. Kotomin, and J. Maier, Thermodynamic properties of neutral and charged oxygen vacancies in BaZrO3 based on first principles phonon calculations. - Phys. Chem. Chem. Phys., 2015, 17, p. 20765-20774. pdf IF: 4.49

  5. A.V. Bandura, R.A. Evarestov, and Yu.F. Zhukovskii, Energetic stability and photocatalytic activity of SrTiO3 nanowires: Ab initio simulations. - Royal Soc. Chem. Advances, 2015, 5, p. 24115-24125. pdf IF: 3.84

  6. P.N. D’yachkov, V.A. Zaluev, S. Piskunov, and Yu.F. Zhukovskii, Comparative analysis of the electronic structures of mono- and bi-atomic chains of IV, III–V and II–V group elements calculated using the DFT LCAO and LACW methods. - Royal Soc. Chem. Advances, 2015, 5, p. 91751–91759. pdf IF: 3.84

  7. P. Fu, R. Jia, C.-P. Kong, R.I. Eglitis, and H.-X. Zhang, From determination of the fugacity coefficients to estimation of hydrogen storage capacity: A convenient theoretical method. - Int. J. Hydrogen Energ., 2015, 40, p. 10908-10917. pdf IF: 3.31

  8.  G. Zvejnieks, A. Ibenskas, and E.E. Tornau, Effects of pressure, temperature and atomic exchanges on phase separation dynamics in Au/Ni(111) surface alloy: Kinetic Monte Carlo study. - J Alloy Compd., 2015, 649, p. 313-319. pdf IF: 3.00

  9. R.I. Eglitis, Ab initio hybrid DFT calculations of BaTiO3, PbTiO3, SrZrO3 and PbZrO3 (111) surfaces. - Appl. Surf. Sci., 358, 2015, p. 556-562. pdf IF: 2.71

  10. A.U. Abuova, Yu.A. Mastrikov, E.A. Kotomin, Y. Kawazoe, T.M. Inerbaev, and A.T. Akilbekov, First principles modeling of Ag adsorption on the LaMnO3 (001) surfaces. - Solid State Ionics, 2015, 273, p. 46–50. pdf IF: 2.56

  11. S. Piskunov and R.I. Eglitis, First principles hybrid DFT calculations of BaTiO3/SrTiO3 (001) interface. - Solid State Ionics, 2015, 274, p. 29-33. pdf IF: 2.56

  12. G.A. Kaptagay, T.M. Inerbaev, Yu.A. MastrikovE.A. Kotomin, and A.T. Akilbekov, Water interaction with perfect and fluorine-doped Co3O4 (100) surface. - Solid State Ionics, 2015, 277, p. 77–82. pdf IF: 2.56

  13. O. Dumbrajs and H. Kalis, Nonstationary oscillations in gyrotrons revisited. - Phys. Plasmas, 2015, 22, 053113 (p. 1-6). pdf IF: 2.14

  14. G.S. Nusinovich and O. Dumbrajs, Field Formation in the Interaction Space of Gyrotrons. - J. Infrared Milli. Terahz. Waves, 2015, 36, p. 1-12. pdf IF: 1.94

  15. T. Idehara,  E.M. Khutoryan, Y. Tatematsu, Y. Yamaguchi, A.N. Kuleshov,  O. Dumbrajs, Y. Matsuki, and T. Fujiwara, High-speed frequency modulation of a 460-GHz gyrotron for enhancement of 700-MHz DNP-NMR spectroscopy. - J. Infrared Milli. Terahz. Waves, 2015, 36, p. 819-829. pdf IF: 1.94

  16. D. Constantinescu, O. Dumbrajs, V. Igochine, K. Lackner, H. Zohm and ASDEX Upgrade team, Bifurcations and fast-slow dynamics in a low-dimensional model for quasi-periodic pasma pertubations. - Romanian Reports in Physics, 2015, 67, p. 1049–1060. pdf IF: 1.52

  17. M. Arrigoni, E.A. KotominD. Gryaznov, and J. Maier, Confinement effects for the F center in non-stoichiometric BaZrO3 ultrathin films. - Phys. Status Solidi B, 2015, 252, p. 139–143. pdf  IF: 1.49

  18. R.I. Eglitis, Comparative ab initio calculations of SrTiO3 and CaTiO3 polar (111) surfaces. - Phys. Status Solidi B, 2015, 252, p. 635–642. pdf IF: 1.49

  19. J.R. Kalnin and E.A. Kotomin, The effective diffusion coefficient in a one-dimensional discrete lattice with the inclusions. - Physica B, 2015, 470-471, p. 50–52. pdf IF: 1.32

  20. E. Shablonin, A.I. Popov, A. Lushchik, A. Kotlov, and S. Dolgov, Excitation of different chromium centres by synchrotron radiation in MgO:Cr single crystals. - Physica B, 2015, 477, p. 133-136. pdf IF: 1.32

  21. R.I. Eglitis, Theoretical prediction of the 5V rechargeable Li ion battery using Li2CoMn3O8 as a cathode. - Phys. Scr., 2015, 90, 094012 (p.1-4) pdf IF: 1.13

  22. A. Chesnokov, O. Lisovski, D. Bocharov, S. Piskunov, Yu.F. Zhukovskii, M. Wessel, and E. Spohr, Ab initio simulations on N and S co-doped titania nanotubes for photocatalytic applications. - Phys. Scr., 2015, 90, 094013 (p.1-7). pdf IF: 1.13

  23. A.V. Bystrova,  Y.D. Dekhtyar,  A.I. Popov, J. Coutinho, and V.S. Bystrov, Modified Hydroxyapatite Structure and Properties: Modeling and Synchrotron Data Analysis of Modified Hydroxyapatite Structure. - Ferroelectrics, 2015, 475, p. 135-147. pdf IF: 0.47

  24. R.I. Eglitis, Comparative first-principles calculations of SrTiO3, BaTiO3, PbTiO3 and CaTiO3 (001), (011) and (111) surfaces. - Ferroelectrics, 2015, 483, p. 53-67. pdf IF: 0.47

  25. R.I. Eglitis, Theoretical modelling of the energy surface (001) and topology of CaZrO3 perovskite. - Ferroelectrics, 2015, 483, p. 75-85. pdf IF: 0.47

  26. A. Anspoks, J. Timoshenko, D. Bocharov, J. Purans, F. Rocca, A. Sarakovskis, V. Trepakov, A. Dejneka, and M. Itoh, Local structure studies of Ti for SrTi16O3 and SrTi18O3 by advanced X-ray absorption spectroscopy data analysis. - Ferroelectrics, 485, 2015, p. 42–52. pdf IF: 0.47

  27. A. PlatonenkoS. PiskunovYu.F. Zhukovskii, and E.A. KotominAb initio simulations on Frenkel pairs of radiation defects in corundum. - IOP Conf. Ser. Mater. Sci. Eng., 2015, 77, 012001 (pp. 1-5). pdf

  28. E. Klotins, On time-resolved approach for phonon assisted interband transitions. - IOP Conf. Ser. Mater. Sci. Eng., 2015, 77, 012003 (pp. 1-9). pdf

  29. I. Karbovnyk, P. Savchyn, A. Huczko, M. Cestelli Guidi, C. Mirri, and A.I. Popov, FTIR studies of silicon carbide 1D-nanostructures. - Materials Science Forum, 2015, 821-823, p. 261-264. pdf

Chapters in Scientific Books

  1. Yu.N. Shunin, Spintronic Nanomemory and Nanosensor Devices (Lambert Academic Publishing, Saarbrücken), 2015, p. 2-49. pdf

Non-SCI Publications

  1. S. Bellucci, F. Micciulla, Yu.N. Shunin, Yu.F. Zhukovskii, V.I. Gopeyenko, N. Burlutskaya, T. Lobanova-Shunina, and A. Capobianchi, Memory nanodevices based on carbon nanotube-Fe-Pt interconnects: Electromagnetic simulations and magnetically stimulated nanotube growth. - J. Mater. Sci. Eng. B, 2015, 5, p. 120-134. pdf

  2. Yu.N. Shunin, Yu.F. Zhukovskii, V.I. Gopeyenko, N. Burlutskaya, T. Lobanova-Shunina, and S. Bellucci, CNTs- and GNRs-based electromagnetic and spintronic devices: Models and simulations. - Proc. Internat. Conf. „Physics, Chemistry and Application of Nanostructures (Nanomeeting-2015, Minsk, Belarus)” (Eds. V.E. Borisenko, S.V. Gaponenko, V.S. Gurin, and C.H. Kam; World Scientific, New Jersey, London, Singapore, Beijing, Shanghai, Hong Kong, Taipei, Chennai), 2015, p. 207-210. pdf

  3. Yu.N. Shunin, S. Bellucci, Yu.F. Zhukovskii, V.I. Gopeyenko , N. Burlutskaya, and T. Lobanova-Shunina, Nanocarbon electromagnetics in CNT-, GNR- and aerogel-based nanodevices: models and simulations. - Computer Modelling & New Technologies, 2015, 19(1A), p. 35-42. pdf

  4. Yu.N. Shunin, S. Bellucci, Yu.F. Zhukovskii, T. Lobanova-Shunina, N. Burlutskaya, and V.I. Gopeyenko, Modelling and simulation of CNTs- and GNRs-based nanocomposites for nanosensor devices. - Computer Modelling & New Technologies, 2015, 19(5A), p. 14-20. pdf

  5. D. Fink, A. Kiv, Yu.N. Shunin, N. Mykytenko, T. Lobanova-Shunina, A. Mansharipova, T. Koycheva, R. Muhamediev, V. Gopeyenko, N. Burlutskaya, Yu.F. Zhukovskii, and S. Bellucci, The nature of oscillations of ion currents in the ion track electronics. - Computer Modelling & New Technologies, 2015, 19(6), p. 7-13. pdf