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A sheet of elastic foil rolled into a cylinder and deformed between two parallel plates acts as a
non-Hookean spring if deformed normally to the axis. For large deformations the elastic force shows
an interesting inverse square dependence on the interplate distance. This phenomenon was used as
the basis for an experimental problem at the 41st International Physics Olympiad. We show that the
corresponding variational problem for the equilibrium energy of the deformed cylinder is equivalent
to a minimum action description of a simple gravitational pendulum with an amplitude of 90°. We
use this analogy to show that the power-law of the force is exact for distances less than a critical
value. An analytical solution for the elastic force is found and confirmed by measurements over a
range of deformations covering both linear and nonlinear behaviors. © 2011 American Association of
Physics Teachers.
�DOI: 10.1119/1.3553232�
I. INTRODUCTION

Šiber and Buljan analyzed the following simple yet peda-
gogically rich problem from the theory of elasticity.1 A thin
flat elastic sheet �for example, a piece of plastic foil� is rolled
into a cylinder of radius b0 and placed between two impen-
etrable parallel plates which are parallel to the axis of the
cylinder, as shown in Fig. 1. The distance 2b between the
plates is fixed externally. For b�b0 the foil acts as a spring
and exerts a force of magnitude F�b� on each of the plates.
An interesting property of this spring is the nonlinear power-
law dependence of the elastic force,1 F�b−2, which we will
show is exact for b�bc�0.7b0. Measuring F�b� for b�bc

has been proposed as a way to determine the bending rigidity
of objects such as plastic foils, electrical connectors, biologi-
cal membranes and microtubules, and possibly nanotubes
and monolayer materials �for example, graphene�.1

A laboratory problem based on measuring F�b� for plastic
transparency films was recently given to the world’s top sec-
ondary school physics students at the 41st International
Physics Olympiad �Zagreb, Croatia, 2010�. The correspond-
ing theoretical problem of constrained minimization of the
foil’s elastic energy might seem difficult. The solution1 is
based on analytical approximations and finite element opti-
mization, and a textbook approach2 relies on force equilib-
rium conditions for strongly bent elastic rods that are rarely
covered in standard physics curricula.

In this paper, we formulate and solve the variational prob-
lem for the minimal energy of deformed elastic cylinder us-
ing tangential angle parametrization of the profile shape. The
solution reveals an equivalence to another conceptually rich
physics system—the large-amplitude pendulum. We will see
that the elastic energy of the foil maps onto the kinetic en-
ergy of the pendulum, and the fixed interplate distance maps
onto the cosine-shape potential energy of the pendulum.
Simple mechanical considerations allow us to deduce the
exact inverse square dependence for the elastic force for b
�bc. By using the standard solution for the large-amplitude
pendulum in terms of elliptic functions, we find the exact
values for bc and related constants, a single transcendental
equation that determines F�b� for b�bc, and a compact ana-

lytic form for the profile of the deformed cylinder. The func-
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tional dependence of F�b� is compared to measurements on a
plastic film in the table-top setup used in Ref. 1. Thus, it is
feasible to obtain a quantitative demonstration of both the
nonlinear law force law for b�bc and the usual linear re-
gime for b→b0.

II. FORMULATION OF THE PROBLEM

A property of the deformation geometry in this problem is
that the Gaussian curvature vanishes at every point. This
property eliminates nonuniform stretching/compression �see
Ref. 2, Sec. 14� and leaves only the bending contribution to
the total elastic energy W for thin sheets �thickness d�b0�.
The problem is essentially one-dimensional and the energy
functional is the same as for an elastic filament �a Kirchhoff
rod, see Ref. 2, Sec. 18�, and is given by

W =
�h

2
� K�x�s�,y�s��2ds , �1�

where the effects of gravity are ignored. Here �= �1
−�2�−1Ed3 /12 is the bending rigidity, E is the bulk Young
modulus of the foil, � is the Poisson ratio, h is the length of
the cylinder in the nondeformed direction �that is, parallel to
the axis�, and K is the planar curvature of the deformation
profile in the plane normal to the axis �the x-y plane�. The
shape of the profile is described using the natural
parametrization3 �x�s� ,y�s�� in the coordinate system defined
in Fig. 2�a� with the origin at point O, and s is the arc length
measured counterclockwise from O.

The integration in Eq. �1� is performed along the entire
profile, and the absence of stretching4 implies that 	ds
=2�b0 regardless of b. The constraint imposed by the plates
is expressed by requiring that the vertical coordinate of point
O� is 2b �see Fig. 2�a��,

x�s = �b0� = 2b . �2�

In the following, we find the minimum of W subject to the
constraint �2� and the impenetrability of the plates. The elas-

tic force is then obtained from F�b�=−dW /d�2b�.
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III. ANALYTIC SOLUTION

A. Lagrangian formulation and analogy to the pendulum

An intrinsic quantity characterizing the shape of a planar
curve is its tangential angle ��s� defined as �ẋ , ẏ�
= �cos � , sin ��. �A dot denotes the derivative with respect to
s.� A particular advantage of employing ��s� is that the

�signed� curvature becomes K= �̇.3 Integrating ẋ=cos� over
the right half of the profile between the contact points O and
O� gives the expression for the constraint �2� in integral
form,

�
0

�b0

cos ��s�ds = 2b =
2b

�b0
�

0

�b0

ds . �3�

At the points of contact between the foil and the plates, the
tangent to the profile must be parallel to the y-axis. Hence,
the boundary conditions for ��s� are

��s = 0� = − �/2, ��s = �b0� = + �/2. �4�

A standard way of converting a constrained optimization
problem to an unconstrained one is the use of Lagrange mul-
tipliers. In our problem, both the target function W and the
constraint �3� are expressed as integrals �functionals� of the
unknown function ��s�. We denote the Lagrange multiplier
for Eq. �3� by 	0

2 �for reasons that will become clear� and use
left-right symmetry in Eq. �1� to show that the variational
problem becomes that of unconstrained minimization with
respect to ��s� and the quantity 	0

2 of the functional

W̃ =
1

2

W

�h
= �

0

�b0

L���s�, �̇�s�,	0
2�ds , �5�

where

L =
1

2
�̇2 + 	0

2 cos � − 	0
2 2b

�b0
. �6�

Fig. 1. �Color online� A thin-walled elastic tube deformed between two
parallel plates. The thick black contour line marks the profile at the critical
value bc /b0=0.717770. . .. The thinner lines above and below correspond to
values of b /b0 between 0 and 1.

Fig. 2. �Color online� �a� Coordinate system for the profile energy calcula-
tion. �b� Equivalent pendulum problem with 90° maximal deviation. �c� A

possible four-contact-point profile.
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The analogy to the pendulum problem is now clear. If we

interpret W̃ as a dynamical action and s as a time, we recog-
nize in Eq. �6� the Lagrange function of a rigid pendulum in
a uniform gravitational field with the angular frequency of
small oscillations equal to 	0 �see Fig. 2�b��. In the pendu-
lum problem, � is the angle of deviation from stable equilib-
rium and satisfies Newton’s equation �the Euler–Lagrange
equation of the variational problem�,5

�̈ + 	0
2 sin � = 0. �7�

In a standard mechanics problem 	0 is usually given, and
the boundary conditions �4� are satisfied by choosing the

appropriate initial velocity �̇�0�
K0, which depends on 	0.
In our case, both 	0 and K0 are not known a priori and must
be determined by satisfying the boundary conditions �4� and
the constraint �3�. The optimal value of 	0

2 is proportional to
the elastic force, because after integrating out the pendulum
degree of freedom �that is, substituting ��s� into the
Lagrange function with the actual solution to the equation of

motion �7��, W̃�	0 ,b� satisfies �W̃ /�	0=0, and thus

F = − �h
dW̃�	0,b�

db
= − �h

�W̃

�b
= 2�h	0

2. �8�

We shall use this property of Lagrange multipliers to calcu-
late F�b�.

Before tackling the mostly mathematical problem of find-
ing K0 and 	0, we give arguments for the power-law depen-
dence, which constitutes our most important result.

B. Power-law dependence, b
bc

Qualitatively, K0�b� starts from K0�b0�=1 /b0 and de-
creases as b is decreased. At the critical value b=bc �in the
sense of separating two qualitatively different behaviors�, the
contact curvature vanishes, K0�bc�=0. The corresponding
pendulum problem becomes that of free oscillations with
amplitude � /2 and frequency 	0�bc�=	c. The period of
these oscillations is T0=4K�1 /2� /	c,

6 where K is the com-
plete elliptic integral of the first kind. �This result is derived
in the following as a special case of Eq. �16�.� According to
Eq. �4�, the period must be equal to T0=2�b0, and we obtain

	c =
1

�0b0
with �0 


�2�3/4�
��

= 0.847213 . . . . �9�

If b is decreased further below bc, an extra condition not
accounted for by the Lagrangian formulation �6� becomes
relevant: the plates do not allow the foil to bend outward,
and thus K0 also remains zero for b�bc. To accommodate
the imposed small values of b without violating the rigid
plates, a finite part of the foil in the vicinity of s=0 and s
=�b0 must remain flat, so that K�s�=0. �These parts are
marked by horizontal dashed lines in the profiles shown in
Fig. 1.� Concurrently, the sections of the profile that do bend
satisfy Eq. �7�, although with 	0�b��	c. If we assume con-
tinuity in K�s�, we conclude that the deformed part of the
profile for b�bc must start with K0=0 �same as for b=bc�,
but cover a length shorter than the full length 2�b0 of the foil
cross-section. This shortening of the deformed part can only
be accommodated by a faster pendulum because the fre-

quency 	0�b� of the latter remains the only adjustable �that
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is, b-dependent� parameter for b�bc. �The other parameter,
K0, is pinned to zero by the presence of a finite flat part.�
According to Eq. �7�, changing 	0 results in a uniform res-
caling of the arc length parameter s, and therefore the bent
parts of the profile for b�bc �marked by curved lines be-
tween the plates in Fig. 1� must be geometrically similar to
the corresponding halves of the critical profile at b=bc
�marked with a thick contour in Fig. 1�.

Having established that the critical profile shape is univer-
sal �in the sense of being applicable for any value of b less
than bc�, we can determine the power-law dependence of the
force using simple dimensional considerations. The scaling
of b and b0 with b /b0 fixed does not change the overall shape
of the profile—the tangential angle � remains the same func-
tion of s /b0. Therefore, the elastic energy �1� can be written
as1 W�b�=�hU�b /b0� /b0, where U is a dimensionless func-
tion of b /b0. For b�bc the flat parts of the profile do not
contribute to the energy. The curved parts are similar to the
critical profile but b /bc times smaller. Thus, their energy
must have a fixed U�b /b0�→U�bc /b0� and rescaled b0

→b0b /bc. This argument gives scaling for the energy W
�b−1, and, consequently, the force F�b−2 for b�bc. The
prefactor is given by

F�b� = Fc

bc
2

b2 = 2�h
�bc/b0�2

�0
2 b−2 �b � bc� , �10�

where Fc
F�b=bc� and Eqs. �8� and �9� have been used.
The phenomenological “stadium profile” model, considered
as a variational ansatz in Ref. 1, assumes a circle as the
universal profile and predicts F�b�= �� /2��h /b−2, similar to
Eq. �10�. However, the critical shape is more efficient than a
circle in minimizing the bending energy.

We can calculate the numerical prefactor in Eq. �10� ex-
actly by determining bc. To this end, we proceed to the inte-
gration of the pendulum’s equation of motion.

The first integral of Newton’s equation is the energy con-

servation law, �̇2 /2−	0
2 cos �=const. We take into account

that cos ��s=0�=0 and find

1
2 �̇2 = 1

2K0
2 + 	0

2 cos � . �11�

Integrating both sides of Eq. �11� with respect to s and �, and
then using Eq. �3� gives

W̃ =
1

2
�

0

�b0

�̇2ds =
�b0K0

2

2
+ 2	0

2b , �12�

=
1

2
�

−�/2

+�/2

�̇d� = 	0I0�K0/	0� , �13�

where

In�� 

1

2
�

−�/2

+�/2

�2 + 2 cos ��1/2−nd� . �14�

We can determine bc from Eqs. �12� and �13�. We substitute
bc, 	c, and 0 for b, 	0, and K0, respectively, use the identity
�0= I0�0� /2, and obtain

bc = I0�0�/�2	c� = �0
2b0 � 0.71777b0. �15�

The results �10� and �15� confirm Eq. �17� of Ref. 1 �with the
2
numerical factor 0.912 corrected to 4�0 /��0.91389�.
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C. Small deformations, b0�b�bc

For b0�b�bc, K0�0 and the relation between the period
and the boundary conditions becomes more complicated. If
we express 	0ds via d� from Eq. �11� and integrate from s
=0 to s=�b0, we obtain the required additional relation,

�b0	0 = 2I1�K0/	0� . �16�

Equation �16� yields the force after using Eq. �8�. The re-
maining unknown is the parameter 
K0 /	0, for which a
single transcendental equation is obtained by combining
Eqs. �12�, �13�, and �16�,

b

b0
=

�

4
 I0��

I1��
− 2� . �17�

The function In in Eqs. �13�, �16�, and �17� can be reduced
to standard elliptic integrals,7 I0��= �4 /k�E�� /4,k2� and
I1��=kF�� /4,k2�, where E and F are incomplete elliptic
integrals of the first and the second kind, respectively, and
k
2 /�2+2 is the elliptic modulus. I1�0�=K�1 /2�
=� / �2�0�, which is consistent with Eq. �9�. We are unable to
solve the transcendental equation �17� analytically and show
the graphical solution in Fig. 3�a�.

As b /b0 changes from bc /b0 to 1, the only root of Eq. �17�
goes from 0 to �. The divergence of =K0 /	0 as b→b0 is
consistent with 	0

2�F→0. The curvature at the contact point
K0=	0 is plotted in Fig. 3�b�. K0 decreases from 1 /b0 to 0
as b goes from b0 to bc, in accordance with our previous
discussion.

In summary, the exact solution for the elastic energy and
the force for b�bc are

W =
4�h

�b0
I0��I1�� , �18�

F =
2�h

b0
2 2I1��

�
�2

, �19�

Fig. 3. �a� Graphical solution of Eq. �17�. �b� The curvature at the contact
point K0 as a function of b /b0. The dashed line �b−bc� / �b0−bc� is plotted
for visual guidance.
where �b /b0� is the root of Eq. �17�, see Fig. 3�a�.
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D. Stability of the universal solution and bending-induced
tension

After formulating an explicit solution for b�bc, Eq. �18�,
we can justify the power-law dependence for b�bc more
rigorously. It has been suggested1 that for b�0.3b0, profiles
with a slight curvature in the horizontal part may provide a
better solution than a “stadium” with completely flat seg-
ments. Such a four-contact-point solution is sketched in Fig.
2�c� �the concave segments BC and AD are exaggerated�.
However, the following argument shows that any four-
contact-point profile will have a larger bending energy than
the optimal profile with straight segments BC and AD.

Let us fix the positions of the contact points on the profile
by gluing the foil to the plates at A, B, C, and D. The cur-
vature KA must be the same at all of these four points due to
symmetry, and furthermore, KA is positive. Thus, the strongly
curved parts AB and CD must conform to our solution for
K0=KA�0 with a smaller b0 adjusted to their respective
shorter lengths. Now consider slightly increasing the lengths
of AB and CD while making BC and AD shorter, so that the
total circumference of the profile remains the same. In this
new configuration, the energy of the segments BC and AD
will be reduced. However, the corresponding lengthening of
the segments AB and CD will also reduce their energy. For
fixed b, longer �higher b0� two-point profiles have lower
minimum total energy, as can be shown explicitly using Eqs.
�8�, �16�, �18�, and �19�,

FT 
 � dW

d�2�b0�
�

b=const
= −

�h

2
K0

2 
 0. �20�

Thus, we can always lower the bending energy of a four-
point profile such as the one shown in Fig. 2�c�, so that BC
and AD become completely flat and can no longer be short-
ened. This minimal energy limit is the zero-contact-curvature
universal stadium profile.

By definition, FT /h is the surface tension energy of the
deformed foil. Uniform tension may be induced in a cylin-
drically deformed foil by bending even if the stretching de-
formation is negligible.2 The value from Eq. �20� for FT and
its independence of s can be confirmed using local Lagrange
multipliers,8 which take the local tension into account explic-
itly.

If we recall that the foil is assumed to be made of uniform
elastic material with bulk Young modulus E, we can estimate
the neglected stretching deformation. Bending-induced nega-
tive surface tension is balanced by uniform linear stretching.
By using Hooke’s law, we can express the increment in the
profile circumference 2��b0 due to stretching as �b0
=b0FT / �Edh�. The corresponding contribution of stretching
�Wstretch�Ehd5 /b0

3 to the total energy W�Ehd3 /b0 is neg-
ligible if d2�b0

2, thus confirming our approximation of an
unstretchable foil. The universal profile is tension free,
FT�b
bc�=0.

E. Critical shape

Before discussing our final results for the force, Eqs. �10�
and �19�, we briefly comment on the shape of the critical
profile. If we use the explicit solution of the pendulum prob-
lem �obtained, for example, by integrating Eq. �11�, see Ref.

7
6�, and use several properties of the elliptic functions, we
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can show that the shape of the profile at b=bc, in units cor-
responding to b0=1 / ��0

�2�, is given parametrically for �
� �−� /2,� /2� by

x��� = �0/�2 + E��/2,�2� , �21�

y��� = � �cos � , �22�

with the arc length s���=�b0 /2+F�� /2,�2�. This shape is
shown in Fig. 1 by the thick contour touching the plates.
Profile shapes for b�bc are obtained by integrating Eq. �7�
numerically with the initial condition obtained from Eqs.
�16� and �17� and shown by thin lines reaching above the
upper plate in Fig. 1.

IV. DISCUSSION AND COMPARISON TO
EXPERIMENT

The final results for the force are shown in Fig. 4. We use
Fc=2�h / ��0b0�2 to express the force into the dimensionless
form, F�b� /Fc, which is a single universal function of b /b0.
This function is shown by continuous lines in Fig. 4; also
plotted is �F�b� /Fc�−1/2 to reveal the range of power-law de-
pendence. The point b=bc is an inflection point of F�b� �with
a jump in the third derivative�.

It is instructive to verify that the rolled foil behaves as a
linear spring when close to a cylindrical shape �that is, as
b→b0�. If we use the definition of In�� to obtain the large 
expansion, we obtain  from Eq. �17�, b0−b��� /4
−2 /��−2b0, and F�b� from Eq. �19� as

F�b� =
2�h

b0
2

b0 − b

b0

4�

�2 − 8
, �b → b0� . �23�

This linear behavior is marked by a dashed line in the lower
right corner of Fig. 4.

Measurements of F�b� have been performed using the
setup and one of the samples �blue plastic binding covers, set
1� described in Ref. 1. The results are shown in Fig. 4 by
circles on a linear scale �see the logarithmic scale used in
Ref. 1, Fig. 5�. The spring was gradually loaded from b=b0
down to bmin=0.4b0 �open circles� and then unloaded by in-
creasing b up to zero force �filled circles�. Note the hysteresis
due to inelastic deformations. The corresponding energy loss

Fig. 4. �Color online� Elastic force F as a function of the half-height b,
scaled by the critical force Fc and the undeformed cylinder radius b0, in
linear and inverse square root representations. Circles: experimental data
scaled by a single fitting parameter Fc. The spring was first gradually loaded
��� up to bmin=0.4b0, and then unloaded ���.
�hysteresis loop area� is 4% of W�bmin�. The critical force
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Fc=116 N with relative error of 3% �estimated from the
residuals between the open data points and the analytical fit�
corresponds to a bending rigidity of �= �1.48�0.04� mJ, in
reasonable agreement with Ref. 1.
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