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Theory of adiabatic transport

e Nanostructure connected to remote ¢

>
equilibrium reservoirs «— > hw
: : D S —_—
o Coherent spinless electrons, no correlations -— - 5
e External periodic potential acts locally:
: ; ; V(x,t) ‘pq
Viz,t) = V(x,t+ 27 /w) R P
e Consider tin V(x,) as a slow variable.
Exact time-dependent scattering states are obtained from instantaneous (“frozen-1’) energy
eigenstates (.| as a perturbation series in powers of 8/0¢ [1].
e The instantaneous current from lead a in the leading (adiabatic) order is a sum of
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Here 7 js the probability and 6 is the phase of instantaneous transmission, f(E) is Fermi distr.

100y = /u’F{(ﬁ— T+ ;ra}

(equivalent of Landauer f-la)

e Adiabaticity holds as long as hw << typical energy scale of 7 (F) variation (e.g., resonance width I') [1,7]

Requires general solution of the static scattering problem at every t



Calculation method

V(x,t) ==>¢€,(t)
/ e Discretize external potential on
l N points (tight-binding sites)

e On-site energies
— ;7 en(t) = V(na,t)

o Nearest-neighbour hoppings J
Ji Jr describe the kinetic energy:

u= —2JCoskga

Charge transferred per one period (zero temperature and zero-bias) [3]:
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e Integrand is an inverse of a N x N matirx (Green S functlon for fixed t and E)

o If V(x,7) is a polynomial in sin wf and cos wt, the integration is done analytically

Gives the adiabatically pumped charge Q, once V(x,t) is specified



Resonance approximation

A weakly coupled state shows a Breit-\WWigner resonance in

rl<:>_£.<:>rr transmission pumping current [4]
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If the couplings vary slowly, the Lorentzian integrates to 1:
AQ, = /-f- I, dt =+ [ X e ,_L/\__i__
Jt, I o
/ \ Unitary rotation

AQ, >0 AQ. <O Can b lized t
. . an be generalized to
Loading, de/dt < 0 Unloading, de/dt > 0 several states
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Approximates Q as a sum of loading/unloading contributions



Quantized pumping with
Surface Acoustic Waves

AC votlage at
f~2-3GHz 2D

A running wave of mechanical deformation
creates a moving potential profile due to
piezoelectric properties of GaAs

e In the depleted region of a point contact
screening is reduced

e Periodic potential can capture and transfer
an integer number of electrons

2DEG:', :ZDEG

e Quantized transport achieved in

Point
SAW contact
transducer -
A\ f = speed of

sound in GaAs

experiments by V.l.Talyanskii et al. (Cambridge, UK, 1996 — ... ) [5]

What can we learn from an idealized adiabatic pumping model?



A simple model

e 1D geometry (single transverse mode)
e Assume complete screening outside a region of length L
e Take the simplest form for the potential induced by the gates and the SAW|[3,06]:

Gate voltage defines Optional gradual
a static barrier screening

N q v

F(m’ t) = {_Hj o COS((}'.‘I? e u_:,{.) pe E_-*'jfﬂf
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SAW amplitude SAW wave-vector g = 27/A

e Charge transfer Q per period (DC component of the acoustoelectric current) is
calculated using the theory of adiabatic pumping [1,3] (see details on the left)
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Electrons per cycle Q/e
N

P=0.25

-3

Acoustoelectirc current =
= frequency x (1,2, 3, ...)x e

Model parameters:
A=2L:Li=4L

-2
Gate voltage V, + u

J =1 (sets the unit of energy)
kra = 11/12 (like free electrons)

N =L /a=24sites

Calculation outcome

Main experimental features are reproduced:

e quantization of the acoustoelectirc
current below conduction pinch-off

e greater SAW amplitude results
in more steps

e higher steps are less accurate
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Experimental data from [5]



How does the staircase form?

Eigenenergies E(t) of an isolated

channel (no gates, no leads)

change periodically

As time evolves, several
energy levels can match
the resonance condition:
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En(t)

Q

0 Time wt
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Each matching is signaled

by a resonance peak in
the instantaneous current
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LOADING UNLOADING

In the first half-period, the minimum

of V(x) is on the left — [,>>T,

T

345

12
Over the full period,
both /;(t) and —/, (1)
integrate to the same Q

2n

In the second half-period,
the captured electrons are more
likely to unload to the right, I',<<T,

Resonance picture builds a bridge towards the ‘moving QD’ scenario



Secondary SAW effects

- e A weak counter-propagating wave

due to reflection or a second SAW

V(z,t) = -V, 4+ P cos(qz — wt) transducer

+ Prer COS(qx + wt e Slope of the first step at Q=e/2 [6]
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dV, B+ qL Persing (4B =const)

In a left-right symmetric channel B =0

e Tuning the denominator to zero

Pumped charge Q/e

gives the sharpest staircase

e Dramatic increase in quantization
accuracy for specifically tuned P
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voltage Vg + ,u-
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and @ has been observed
experimentally [9]

The sharpest steps are observed for =0 and T
Model parameters: P=8J; A =4 L ;Ls=>;N=10




What have we learned?

The SAW model example demonstrates a set of tools to study adiabatic quantum
pumping due to complex potentials:

e Exact calculation reproduces the detailed qualitative features of the experiment

e Analysis of the model through the lens of the resonance approximation
confirms the “moving quantum dot” scenario

e Two major obstacles on the way to reliable quantitative predictions:
interactions and non-adiabaticity
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Open questions

Help me
to learn!

Interaction and correlation effects

For non-interacting electrons, we have a formalism to study the crossover from
an open to a closed system. Can the resonance approximation be extended to
include the dynamic formation of:

e Coulomb blockade?
e Kondo-type resonances?

The role of guantum interference

For KT >> T, the interference in the leads can be ignored and the resonance
approximation is equivalent to a rate equation approach [4, cond-mat version].

e What is truly quantum in “adiabatic quantum pumping”?
e How to define a classical limit?
e Are there any kind of “intensity” versus “interference” terms?




