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 Nanostructure connected to remote 
equilibrium reservoirs 

 Coherent spinless electrons, no correlations 

 External periodic potential acts locally: 

 Consider t in  V(x,t) as a slow variable.

Exact time-dependent scattering states are obtained from instantaneous (“frozen-t”) energy 

eigenstates  as a perturbation series in powers of / t [1].

 The instantaneous current from lead  in the leading (adiabatic) order is a sum of 

 (equivalent of Brouwer f-la [2]) 

(equivalent of Landauer f-la) 

 Here  is the probability and  is the phase of instantaneous transmission, f(E) is Fermi distr.

 Adiabaticity holds as long as  << typical energy scale of (E) variation (e.g., resonance width ) [1,7]

Theory of adiabatic transport

V(x,t) µ

Requires general solution of the static scattering problem at every t



 Discretize external potential on 
N points (tight-binding sites) 

 On-site energies 

 Nearest-neighbour hoppings J
describe the kinetic energy: 

Charge transferred per one period (zero temperature and zero-bias) [3]: 

 Integrand is an inverse of a N N matirx (Green’s function for fixed t and E) 

 If V(x,t) is a polynomial in sin t and cos t, the integration is done analytically 
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Calculation method

Gives the adiabatically pumped charge Q, once V(x,t) is specified



A weakly coupled state shows a Breit-Wigner resonance in 

If the couplings vary slowly, the Lorentzian integrates to 1: 

Loading, d /dt < 0 Unloading, d /dt > 0 

transmission pumping current [4] 

Resonance approximation

Approximates Q as a sum of loading/unloading contributions 

l r

Unitary rotation 

Can be generalized to 
several states 



 A running wave of mechanical deformation 
creates a moving potential profile due to 
piezoelectric properties of GaAs 

 In the depleted region of a point contact 
screening is reduced

 Periodic potential can capture and transfer 
an integer number of electrons 

   

 Quantized transport achieved in  
experiments by V.I.Talyanskii et al. (Cambridge, UK, 1996 – ... ) [5] 
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 f = speed of
 sound in GaAs

What can we learn from an idealized adiabatic pumping model? 

Quantized pumping with 
Surface Acoustic Waves



 1D geometry (single transverse mode) 

 Assume complete screening outside a region of length L 

 Take the simplest form for the potential induced by the gates and the SAW[3,6]: 

Charge transfer Q per period (DC component of the acoustoelectric current) is 
calculated using the theory of adiabatic pumping [1,3] (see details on the left)

Gate voltage defines
a static barrier 

Optional gradual 
screening

SAW amplitude SAW wave-vector q = 2 /

A simple model 



Main experimental features are reproduced: 

 quantization of the acoustoelectirc 
current below conduction pinch-off

 greater SAW amplitude results  
in more steps

higher steps are less accurate

Model parameters:
  = 2 L ; Ls = 4 L

J = 1  (sets the unit of energy) 
kFa = /12  (like free electrons) 
N  L / a = 24 sites 

Calculation outcome 
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Acoustoelectirc current = 

= frequency  (1, 2, 3, …) e



How does the staircase form? 
Eigenenergies En(t) of an isolated 
channel (no gates, no leads) 
change periodically 

Each matching is signaled 
by a resonance peak in 
the instantaneous current

As time evolves, several 
energy levels can match 
the resonance condition: 

En(t) = Vg + µ

LOADING UNLOADING

Over the full period, 

both Il (t) and –Ir (t)
integrate to the same Q 

En(t)   Vg + µ

In the first half-period, the minimum 
of V(x) is on the left l>> r

In the second half-period,
the captured electrons are more 
likely to unload to the right, l<< r

Q

  Il (t)

–Ir (t)
Time t

Resonance picture builds a bridge towards the ‘moving QD’ scenario 



 A weak counter-propagating wave 
due to reflection or a second SAW 
transducer

 Slope of the first step at Q=e/2 [6] 

In a left-right symmetric channel B =0

 Tuning the denominator to zero 
gives the sharpest staircase

 Dramatic increase in quantization 
accuracy for specifically tuned Pref

and  has been observed 
experimentally [5] 

Secondary SAW effects

The sharpest steps are observed for =0 and 

Model parameters: P =8 J;   = 4 L ; Ls = ; N = 10 

Gate voltage Vg + µ
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The SAW model example demonstrates a set of tools to study adiabatic quantum 
pumping due to complex potentials: 

 Exact calculation reproduces the detailed qualitative features of the experiment 

 Analysis of the model through the lens of the resonance approximation 
confirms the “moving quantum dot’’ scenario 

 Two major obstacles on the way to reliable quantitative predictions:  
interactions and non-adiabaticity 

What have we learned? 
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More details
to discuss!

 Smearing of conductance 
pinch-off

 Combination of source-
drain bias and pumping 

 Role of gradual screening 



Interaction and correlation effects

For non-interacting electrons, we have a formalism to study the crossover from 
an open to a closed system. Can the resonance approximation be extended to 
include the dynamic formation of:

 Coulomb blockade? 

 Kondo-type resonances? 

The role of quantum interference

For kT >> , the interference in the leads can be ignored and the resonance 
approximation is equivalent to a rate equation approach [4, cond-mat version].

 What is truly quantum in “adiabatic quantum pumping”? 

 How to define a classical limit?  

 Are there any kind of “intensity” versus “interference” terms? 

Open questions Help me
to learn! 


