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The formalism of many-particle densities developed earlier by the present 
authors is applied to the study of the cooperative effects in the kinetics of 
bimolecular A +B--*0 reactions between oppositely charged particles (reac- 
tants). It is shown that unlike the Debye-Hiickel theory in statistical physics, 
here charge screening has essentially a nonequilibrium character. For the asym- 
metric mobility of reactants (DA=0, D~4:0) the joint spatial distribution of 
similar immobile reactants A reveals at short distances a singular character 
associated with their aggregation. The relevant reaction rate does not approach 
a steady state (as it does in the symmetric case, DA=DB), but increases 
infinitely in time, thus leading to a concentration decay which is quicker than 
the algebraic law generally accepted in chemical kinetics, n oc t-1. 

KEY WORDS: Diffusion-limited reactions; charge screening; many-particle 
effects; self-organization; spatial correlations; Coulomb interaction. 

1. I N T R O D U C T I O N  

The  k ine t ics  of  the  A + B - - * 0  b i m o l e c u l a r  r eac t ion  be tween  charged  

par t ic les  ( reac tan t s )  is t rea ted  t r a d i t i o n a l l y  in  te rms  of  the law o f  mass 
action. (1) A s s u m i n g  tha t  n ( t ) =  h A ( t ) =  nB(t) a n d  e = eg = --eB (n a n d  e are 

par t ic le  c o n c e n t r a t i o n  a n d  charge) ,  one  gets 

~a.~,.,t__~, _ K(t) n2(t) (1) 
dt 
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In the transient period the reaction rate K(t) depends on the initial particle 
distribution, but as t ~ o% it reaches the steady-state limit 

K( oo ) = Ko = 47zDRefr (2) 

where D = DA + DB is the sum of diffusion coefficients and Refr is the effec- 
tive reaction radius. In terms of the black sphere approximation (when AB 
pairs approaching to within certain critical distance ro instantly recombine) 
this radius is (2) 

L 
Reef = r0 (3) 

1 - e x p ( - L )  

where the dimensionless parameter L = R/ro contains the so-called Onsager 
radius, which is defined through 

e 2 
R = - -  (4) 

ekB T 

The Onsager radius is the critical distance at which the energy of 
Coulomb interaction between particles equals the thermal energy, kB T, and 
thus the particles are very likely to recombine. 

The value of the parameter L entering Eq. (3) defines whether 
Coulomb attraction or recombination is predominant: as L ~  1, Refr~ro, 
whereas in the opposite case L >> 1, Rerr~ R (the effective recombination 
sphere equals the Onsager radius). 

Despite the fact that Eqs. (2)-(4) have been widely and successfully used 
in interpreting actual experimental data, (1~ they are not well justified 
theoretically: in fact, in their derivation the solution of a pair problem with 
nonscreened potential UAB(r)=-e2/~r ' is used. However, in the statistical 
physics of a system of charged particles the so-called Coulomb catastrophes (3) 
have been known for a long time and they arise just because of the neglect 
of the essentially many-particle charge screening. 

An attempt (4) to use the screened Coulomb interaction characterized 
by the phenomenological parameter, the Debye radius RD, (3) does not 
solve the problem, since K(oe) has been still traditionally calculated in the 
same pair approximation. 

Another important many-particle aspect of the bimolecular reaction 
kinetics was discovered recently for neutral particles, when L = 0 .  (5-9) 

Both analytical calculations and computer simulations have demonstrated 
the unusual asymptotic decay law n(t) oc t-d/4 as t ~ oe (d is the space 
dimension). The reaction rate is reduced here as compared with the 
standard chemical kinetics, n(t) oc t 1, because of nonequilibrium pattern 
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formation--in the course of reaction its volume is divided into domains 
with the distinctive size r  (Dt) u2 (called also the diffusion length); each 
domain contains predominantly particles A or B only. In other words, the 
statistical aggregation of similar particles occurs and increases in time since 
local inhomogeneities in particle densities (unavoidably present in any 
random distribution) turn out to be more stable than an absolutely homo- 
geneous (well-stirred) system of particles. This effect is known to be more 
pronounced for high initial particle concentrations and/or long reaction 
times. (7) 

As was noted in ref. 5, for charged particles such a reduction of the 
reaction rate is unlikely to occur, since spatial fluctuations in particle 
densities are now governed not by ~(t), but the screening radius; Coulomb 
repulsion of similar particles prevents their aggregation. 

As was demonstrated for the first time by us, (t~ charge screening in 
the bimolecutar reaction is of a nonequilibrium character and is not deter- 
mined uniquely by particle densities, as is known to be in an equilibrium 
system of charged particles. Indeed, diffusion (spatial particle motion) 
determining the reaction kinetics is quite slow. On the other hand, unlike 
equilibrium systems, now oppositely charged particles recombine. Let us 
represent the effective force of Coulomb attraction by F =  -e2S/er 2, where 
S = S(r, t) is the screening factor. In the thermodynamic equilibrium state 
S=S(r)  only and is characterized by a single parameter RD, besides 
limr ~ ~ S(r) = 0. For nonequilibrium screening So(t) = limr ~ ~ S(r, t), 
which generally speaking is nonzero. It is shown (1~ that in the case of 
equal diffusion coefficients, OA=DB, l i m t ~  So(t)=0,  i.e., the quasi- 
equilibrium charge distribution is formed at long reaction times. In other 
words, Eqs. (2)--(4) remain valid, but in the framework of the many- 
particle formalism (1~ there is a dynamic interplay between the reaction rate 
acceleration due to Coulomb repulsion of similar particles and the cutoff of 
their interaction caused by a screening. 

However, there is an important case neglected in ref. 10 when charge 
screening could be principally nonequilibrium and thus Eqs. (2)-(4) are no 
longer valid. To demonstrate it, we assume that particles of one kind, say 
A, are immobile (DA----0). This situation was considered earlier in ref. 7 for 
neutral particles and a strong statistical aggregation of immobile particles 
was found to occur. This aggregation is not destroyed by the diffusive 
motion of reactants and leads to an additional reaction rate reduction, 
which was confirmed by computer simulations. ~') We show below that for 
the charged particles in question an aggregation also takes place, but has 
other consequences. 

At long distances from the A-rich aggregate existing on the back- 
ground of the uniform B distribution it resembles a superparticle with the 
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effective charge eefr..~NAeA, where NA is the number of similar particles in 
the aggregate. As L > 1, the effective recombination radius is proportional 
to the product of charges [see Eq. (4)], i.e., Reff~ NAR. For the qualitative 
estimate we take into account that diffusive motion of B destroys A 
aggregates, so that at the moment t the reaction kinetics is determined by 
the interaction between the aggregate A occupying the distinctive volume 
V g  ~3(t) and the background of B. As the upper limit estimate of NA let 
us take the mean number of particles A in the volume V, NA = n(t) ~3(t). 
Substituting now the reaction rate K(t)~ 4nDRNA into Eq. (1), one arrives 
at the new asymptotic law n(t) oc t --5/4, indicating that the reaction now is 
accelerated. 

After these preliminary comments, Section 2 deals with the exact 
statement of the problem. Some results are presented in Section 3 and the 
conclusion is drawn in Section 4. Note that this problem applies to several 
fields of the chemical physics of condensed matter. In particular, it is true 
for radiation physics of ionic crystals, (12'13) where primary Frenkel defects- 
vacancies are immobile below room temperature, whereas interstitial ions 
become mobile above typically 30 K; these defects are oppositely charged 
and interact via the Coulomb law. 

2. K I N E T I C  E Q U A T I O N S  

A set of the integrodifferential kinetic equations used below was 
derived and analyzed in ref. 10. We stress here only some general ideas on 
which it rests. 

(i) A fundametal solution of the Markov process for the A + B ~ 0 
reaction under study can be presented in the form of an infinite set of 
coupled equations for the so-called many-point-particle densities pro, m,. (7) 
These many-point densities are averages over ensembles of microscopic 
densities ~v(r, t) (v = A, B) 

Pm.m'---- '~A(ri, t) I ]  ,~.(r~, t) (5) 
j = l  

where self-action singular terms are excluded. The derived set of kinetic 
equations for Pm.m' ( m , m ' = 0 , 1 , . . . , ~ ;  Po.o=l)  contains two kinds of 
contributions: 

8t = 8t ~ + ditf (6) 
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due to reactant recombination and diffusion, respectively. For exam- 
ple, (7, ~ 6) 

~P~__~,m' 
m m' 

= - ~ ~ a ( I r , - r j l )Pm,  m' 
Ot rec i=1  j = l  

- -  ~ f o ( [ r i - r ~ n ' + l [ ) P m , m ' + I  dr~.'+l 
i = l  

m' 

- Z fa([rj-r, ,+ll)Pm+l,mdrm+l (7) 
j = l  

Here a(r) is the AB pair recombination rate. The first term in Eq. (7) 
describes all the possible ways in which m particles A can recombine with 
m' particles B, whereas the other terms describe the recombination of 
particles B with A (and vice versa) not belonging to a set of (m+m')  
particles. In terms of the black sphere model (instant dissimilar particle 
recombination when their separation is less than some critical radius) we 
can write down 

a(r)=croO(ro--r), ao ~ oo (8) 

where O(x) is the Heaviside step function. In the recombination model (8) 
characterized by the clear-cut recombination radius r o of a black, com- 
pletely absorbing sphere the limiting transition of an instant recombination 
is assumed, ao ~ ~ .  Use of Eq. (8) permits us to simplify maximally the 
kinetic equations of the diffusion-controlled reaction. 

The diffusion contribution to the kinetic equations for the case of 
reactant interaction (drift in the field) reads (1~ 

m m' 
~Pm,m' 2 Ai V ( . | B j  

Ot difr -- ViJm, m,- Z (9) = .2 vrn, m, 
i=1  j = l  

where the diffusion fluxes are 

Ai ( Pm, m'Vwi ) Jm,m,= --DA V i p , , y +  kBT ~ m.m'j 

"J - D .  (Vjp...,., Pm'm'V ' .wJ  
J~ ,m,  = ' + kB T ,1 --m,m'j 

(10) 

i In two last equations the mean force potential W,,,m, is introduced, for 
which 
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i ViUAA(Ire--ri,I)+ ~ VifAB(Iri--rjI) V i  Win, m, -- 
i'~:i j = l  

f Pm+l,m'~--] 17 ~ l r i _ r m + l l ) d r  m "~- --i  ~J AA~, + 1 
Pm, m' 

+ f  Pm, m'+ 1 ViUAB(Iri-- r ' ,+  ~[) dry,, + 1 (11) 
Pm, m' 

where UAA(r), UBB(r), and UAB(r) are the pair potentials of particle inter- 
action. The potential WJm,,,, is defined similarly. As is seen from Eq. (11), 
the mean force acting on a particle A has contributions from both direct 
interactions within a group of (m +m')  particles and indirect interactions 
(integral terms). 

Single-point densities are nothing but macroscopic concentrations: 

Pl,0=nA(t), P0,1 = nR(t) (12) 

whereas the higher-order densities after extracting the concentration 
cofactors define a complete set of the correlation functions. They give us 
statistical information on the relative spatial distribution of reacting 
particles of both kinds, thus defining the fluctuation spectrum of the kinetics 
under study. 

(ii) Similar to numerous solid-state problems leading to the infinite 
sets of equations (6) for the distribution functions, the A + B ~ 0  
bimolecular kinetics cannot be solved exactly and the relevant hierarchy of 
equations has to be decoupled, which shorterns its fluctuation spectrum. 

(iii) The use of a cutoff procedure for the reaction between charged 
particles has additional difficulties for the following reasons. Rigorous 
equations for the correlation functions contain both terms due to reaction 
itself and the drift in the field caused by the interaction potentials. As is 
well known from the statistical physics of Coulomb systems, (3) in such 
problems the particle density cannot serve as a small parameter; as is 
shown in ref. 7, even for neutral particles, L =  0, particle concentration 
decreases in time, but it enters the solution in the form of a product n(t) 4 3 
which increases in time. Similar to the physics of phase transitions and 
critical phenomena, the bimolecular reaction under study demonstrates 
spatial self-organization, and thus to decouple a set of the relevant kinetic 
equations, approximations widely used in the former theory could be 
effective. 

(iv) As was shown in ref. 7, for neutral particles, L = 0, practically 
the only useful approach is based on the Kirkwood superposition 
approximation ('4) 

P2,1 => Pz'~ r2) Pl'x(rl' r'l) Pl'l(r2' r]) (13) 
Pl,O(rl) Pl,o(r2) Po, l(r~l) 
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Mathematical difficulties of the description of the fluctuation spectrum 
restrict the shortened hierarchy of equations at the level of the joint 
correlation functions for similar, Xa(r, t) and XB(r, t), and dissimilar 
particles, Y(r, t), describing correlations within pairs A-A, B-B, and A-B 
respectively: 

P2.o = n~(t) XA(Ir, - r21) 

P0.2 = n~(t) Xg(Ir'l -- r~[) (14) 

P,,l = hA(t) nn(t) Y(lr, - r'll) 

The physical sense of these joint correlation functions is very trans- 
parent(7'16): the average density of the v-type reactants at a distance r from 
the A-type reactant placed at the coordinate origin is 

Ca(r, t) = hA(t) Xa(r, t), v = A 
(15) 

CB(r, t )= riB(t) Y(r, t), v = B 

The joint correlation functions of similar (A-A, B-B) reactants characterize 
directly the fluctuations in a number of particles v = A, B in an arbitrary 
volume V: 

( ( N v - ( N v } )  2 } 
- 1 +nv(t) j [X~(r, t ) - l ]  dr (16) 

The second term of the rhs of Eq. (16) describes the deviation of the 
fluctuation spectrum from the Poisson spectrum (as it is seen on the joint 
density level). The only case when higher-order densities were used is in 
ref. 7 dealing with triple correlation functions in the A + B --, B reaction. 

(v) However, the Kirkwood approximation cannot be used for the 
modification of the drift terms in the kinetics equations, since it is too 
rough for Coulomb systems to give us the correct treatment of the charge 
screening. (3) Therefore, the cutoff of the hierarchy of equations in these 
terms requires use of some principally new approach, keeping in mind that 
it should be consistent with the level at which the fluctuation spectrum is 
treated. In the case of the joint correlation functions we use here, this 
means that the only acceptable approach for us is the Debye-Hfickel 
approximation. (3) Let us consider it briefly. Put particle A at the origin. 
Keeping in mind the physical interpretation of the correlation function in 
Eq. (15), an expression CA(r, t ) =  hA(t)Xa(r, t) defines the density of A's at 
the distance r from a given particle A at moment t. The charge density of 
these particles is 

fig(r, t) = ea CA(r, t) = eAna(t) Xa(r, t) (17) 



134 Kuzovkov and Kotomin 

where eA is a charge of particle A. The charge density of B's is 

~s(r, t )= eB CB(r, t )= eBnB(t) Y(r, t) (18) 

The potential q~A(r, t) produced by these charges in a medium with 
dielectric constant e is obtained from the Poisson equation as 

V2~bA(r, t )=  _4_~n [r t )+  ~B(r, t)] (19) 

For equal concentrations hA(t) = nB(t) = n(t) of particles with the Coulomb 
attraction, en=--eB,  the kinetic equations are simplified and will be 
written down below. 

(vi) Therefore, the approximate treatment of the A + B ~ 0 reaction 
for charged particles unavoidably requires a combination of several 
approximations: the Kirkwood superposition one for the reaction terms, 
Eq. (7), and Debye-Hiickel for modification of the drift terms, Eq. (9), with 
self-consistent potentials. We do not discuss here the accuracy of the latter 
approximation, and note only that we found it to be correct enough for 
both qualitative and semiquantitative description of the charge screening. 

The equation for the time development of macroscopic concentrations 
formally coincides with Eq. (1), but with a dimensionless reaction rate 
K(t) = K(t)/4nDro which is, generally speaking, time dependent and defined 
by the flux of the dissimilar particles via the recombination sphere of the 
radius %. Using dimensionless units n ( t ) -  4nrgn(t), r = r/ro, and t =- Dt/r 2, 
we have, for the reaction rate usual for the black sphere, Eq. (8), for the 
flux over the recombination sphere 

K(t) = 0 r(r,Dr t) r =  1 (20) 

The boundary condition imposed is the correlation weakening at infinity 

lira Y(r, t), Xv(r, t )=  1 (21) 
r ~ o o  

and the recombination condition for dissimilar particles corresponding to 
the black-sphere model, Y(r <<. 1, t) - O, as well as the condition of zero flux 
through the origin for similar particles," ~ - (7) 

lim Dv r2 OXv(r, t )=0  (22) 
r ~ O  Dr  
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Equations (1) and (20) are coupled with the equation set for the joint 
correlation functions discussed above: 

aY(r, t !=v(VY(r  ' t)+ Y(r, t)VU(r, t ) ) -n( t )K(t)  Y(r, t) ~ J[X~] (23) 
Ot v = A , B  

OXv(r, t) 
~ = D~V(VXv(r, t) + Xv(r, t) VUv(r, t)) - 2n(t) K(t) Xv(r, t) J[ Y] (24) 

Note that we use the dimensionless diffusion coefficients D A = 2~ and 
D B = 2(1 - to), with ~ = DA/(DA + DB), in Eq. (24). 

When deriving the set of equations (23), (24) from a formally correct 
but infinite set of equations for the correlation functions of all orders, two 
principal approximations were used. The first one is Kirkwood's superposi- 
tion approximation(3"14) for three-particle densities leading to the 
appearance in Eqs. (23), (24) of the functionals 

~r+l [Z(r', t ) - -  1] r' dr' (25) J[Z] - 1 ~ 11 

Its accuracy in the kinetic problems under study has been dis- 
cussed(7'15'16); it has been shown ~ that the superposition approximation 
is quite correct for equal particle concentrations, nA =nB. In particular, the 
set (1), (20), (23), (24) applied to the reaction between neutral particles 
( U =  Uv = 0) is able to reproduce the asymptotic decay laws found analyti- 
cally in refs. 5 and 6 by means of other techniques. 

Another approximation made is analogous to the Debye-Hiickel 
one ~3) and permits us to express the self-consistent potentials via particle 
concentrations and the joint correlation functions (~~ 

V2U~(r, t) = -n(t)  L[Xv(r, t) - Y(r, t)], lim rUv(r, t)= L (26) 
r ~ 0  

where U(r, t )=  --�89 t)+ UB(r, t)] (dimensionless units are used). 
To demonstrate the importance of charge screening in a many-particle 

system, it should be mentioned that the substitution of potentials Uv 
entering Eqs. (23), (24) by nonscreened potentials Uv=L/r leads to the 
Coulomb catastrophe, manifested by the unlimited increase of the faction 
rate K(t)/1~ 

If particles have different diffusion coefficients, O a r DB, their correla- 
tion functions no longer coincide, X ,  ~ XB, which results also in different 
screening effects for these two kinds of particles--see Eq. (26). 

Unlike the case of the neutral reactants, where the analytical solution 
reveals the auto-model behavior in coordinate r/i, in our case of charged 
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particles the singular solutions arise on the spatial scale of the order of the 
recombination radius r0, thus precluding such a simplified analytical 
analysis. Therefore, we will compare the semiqualitative estimates presented 
in Section 1 with numerical calculations of our kinetic equations. 

3. RESULTS 

A solution of the kinetic equations with singular (e.g., Coulomb) 
potentials is a nontrivial problem. The efficient calculation of Eqs. (23), 
(24) needs to use difference schemes whose coefficients depend on poten- 
tials. Since these potentials Uv(r, t) in their turn depend on the correlation 
functions [see Eq. (26)], we have to handle nonlinear equations, for which 
the iterative procedure developed in ref. 10 is used. 

The asymptotic (t-+ oo) treatment of the set of nonlinear integro- 
differential equations is quite difficult even as a computational problem, 
since solution stability requires the use of small time increments in a mesh, 
and thus we could reach t = 105 only (in dimensionless units). Besides, in 
the particular case of asymmetric mobility, DA = 0, we observe a spatial 
particle distribution revealing strongly developed singular properties, which 
requires the additional reduction of the coordinate increment. 

Figure 1 shows the time development of particle concentrations. At 
long times the kinetics for symmetric (DA = DB) and asymmetric (DA = 0) 
cases differ significantly: in the latter case the reaction proceeds more 

Fig. 1. 
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10 4. 10 5 

D t / r o  2 
Part icle concen t ra t ion  n(t) as a function of time. Full curve,  D A = 0; dashed  curve,  

D n = D B. P a r a m e t e r s  are  L = 1, n ( 0 ) =  0.1. 
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quickly. Note that the choice of the parameter  L = 1 corresponds to the 
weak electrostatic field; the Onsager radius R is small and coincides with 
the recombination sphere radius ro. The initial dimensionless concentration 
n(0) = 0.1 is also not too large: it is only 10% of the maximum concentra- 
tion which could be achieved under irradiation. (16) The magnitudes of these 
two parameters were chosen to save time in our computations. 

The difference in the kinetics for two limiting cases DA----0 and 
DA = DB becomes more obvious in terms of the current critical exponents 
defined as 

d ln  n(t) 
(27) 

~(t) = d ln  t 

It yields the slope of decay curves shown in Fig. 1. The conclusion can be 
drawn from Fig. 2 that in the symmetric case we indeed observe well- 
known algebraic decay kinetics with ~ (oo)=  1 corresponding to a time- 
independent reaction rate, Eq. (1). However, in the asymmetric case the 
critical exponent increases in time, t h u s  indicating the peculiarity of the 
kinetics as we qualitatively estimated in Section 1. 

The dimensionless reaction rate K(t) as a function of time for different 
values of ~ = DA/D is plotted in Fig. 3. One can see again that as t -~ ~ ,  
in the symmetric case it indeed reaches the steady-state value described by 
Eqs. (2)-(4). However, in the asymmetric case there is no steady state: it is 
seen very well from the additional curve for DA/D = 0.01--here the kinetics 

0 

1.25 

1.00 

0.75 
0 ~ 10 4 10 5 

D t / r o  2 

Fig. 2. The critical exponent, Eq. (27), as a function of time. Parameters and key as in Fig. 1. 
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Fig. 3. The time development of the reaction rate K(t). Dashed curve, symmetric case 

(D, = DB); solid curve, asymmetric case (DA = 0); dotted curve, DA/D = 0.01. 

is the  s ame  as for the a s y m m e t r i c  case up  to Dt/r~ <~ 10 3, b u t  at  grea ter  

t imes it  fol lows the k ine t ics  k n o w n  for the  s y m m e t r i c  s i tua t ion .  
A n  u n u s u a l  b e h a v i o r  of the r eac t ion  rate  is clarif ied in  Fig. 4: the  

sc reen ing  factor  S(r, t) s h o w n  here  is o b v ious ly  nonequilibrium; its 

a s y m p t o t i c  va lue  So(t) increases  in  t ime. [As  was said above ,  at  low 

6t; - 5 

D a = O  

S 
2 - - -  

0 5 10 

r / r  o 
Fig. 4. The screening factor in the asymmetric case. Parameters as in Fig. 1. Curves 1-5 

correspond to the dimensionless time Dt/r2o: 101, 102, 103, 104, and 105, respectively. 
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concentrations the values of So(t) correspond to the mean number of 
particles A in their agregates existing on the background of a uniform B 
distribution.] Note that, as noted in Section 1, this aggregation has purely 
statistical character. 

For the asymmetric case the spatial distribution of A particles reveals 
quite singular behavior ("raisins in dough") (Fig. 5). The joint correlation 
function for similar particles, XA(r, t), has a sharp maximum near the 
coordinate origin: its amplitude increases monotonically with time, but it 
decreases by several orders of magnitude as r increases from zero up to 
several times r0. Correspondingly, the screening factor shown in Fig. 4 
approaches, at the same distance, to its asymptotic value. The physical 
meaning of XA(r, t) is just a ratio of the probability density to find some 
A particle at a final distance r from a given A to that at their random dis- 
tribution (r-+ or). Hence, the power-law increase in XA(r, t) maximum 
with time seen in Fig. 5 indicates clearly strong aggregation of immobile A 
particles. 

Joint distribution of B-B and A-B pairs is shown in Fig. 6. The dis- 
tribution of similar mobile particles B at long times in the asymmetric case 
practically is the same as in the symmetric case (when XA=XB). The 
behavior of XB(r, t) is determined by the Coulomb repulsion of B's for 
which the nonequilibrium screening effect does not take place. In its turn, 
some deviation for the joint dissimilar functions Y(r, t) seen in Fig. 6 for 
the symmetric and asymmetric cases is a direct consequence of different 
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Fig. 5. The joint correlation function X A of similar particles A in the asymmetric case. 
Key as in Fig. 4. 
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Q 2.."" 
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0.0 
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Fig. 6. The joint correlation function of dissimilar particles [ Y(r, t), solid curve] and that of 
similar particles [Xs(r, t), dashed curve]. Parameters are L = 1, n(0)=0.1. (1)Asymmetric 
case; (2) symmetric case. 

screening effects: in the latter case the effective recombinat ion radius 
increases in time, which results in an increase of  the Y(r,  t)  gradient at 
r = r o  [see E q . ( 2 0 ) ] ;  at long times this correlat ion function itself 
approaches  the Heaviside steplike form. 

Lastly, Fig. 7 demonstrates  the i n t e r m e d i a t e  case of slowly, mobile A 

Fig. 7. 
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The joint correlation functions in the intermediate case, DA/D =0.01. Solid curve, 

Y(r, t); dashed curve, XA(r, t); dotted curve, XB(r, t). 



Charge Screening in Bimolecular Reactions 141 

particles. It is seen very well that now aggregates of A are dissolved by 
diffusive motion and their distribution is no longer singular. At long times 
the difference between correlation function XA and J(~ becomes negligible. 

The screening parameter S(r, t) for the symmetric case, DA=DB,  
is shown in Fig. 8. It demonstrates clearly the formation of a quasi- 
equilibrium charge screening; at any time, S(r, t)<~0 and its asymptotic 
value So(t) decays monotonically in time. 

The nonequilibrium particle distribution is clearly observed through 
the joint correlation functions plotted in Fig. 9. Note that under the linear 
approximation (1'2) the correlation function for the dissimilar defects Y(r, t) 
increases monotonically with r from zero to the asymptotic value of unity; 
Y(r--, o% t ) =  1. In contrast, curve 1 in Fig. 9 ( t =  101) demonstrates a 
maximum which could be interpreted as an enriched concentration of dis- 
similar pairs, AB, near the boundary of the recombination sphere, r >/r 0. 
With increasing time this maximum disappears and Y(r, t) assumes the 
usual smoothed-step form. The calculations show that such a maximum in 
Y(r, t) takes place within a wide range of initial defect concentrations and 
for a random initial distribution of both similar and dissimilar particles 
used in our calculations: Xv(r, O) = Y(r > 1, 0) = 1. Mutual Coulomb repul- 
sion of similar particles results in a rapid disappearance of close A-A 
(B-B) pairs separated by a distance r < L  [seen in Fig. 9 as a decay of 
Xv(r, t) at short r with time]. On the other hand, it stimulates strongly the 
mutual approach (aggregation) of dissimilar particles leading to the maxi- 
mum for Y(r, t) at intermediate distances observed in Fig. 9. 
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Fig. 8. The screening parameter in the symmetric case, DA = DB. Parameters are n(0) = 1, 
L = 5. Curves 1-3 correspond to the dimensionless time Dt/r~ = 1, 101, 10 2, respectively. 
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Fig. 9. The joint correlation functions for the c a s e  D A = O B. Solid curves, dissimilar defects, 
Y(r, t); dashed curves, similar defects, XA(r, t) = XB(r, t). Parameters n(0) = 1, L = 5. Curves 
1-3 correspond to the dimensionless time equal to 101 , 10 2 , 10 5 , respectively. 
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Fig. 10. The role of nonequilibrium charge screening in eliminating the Coulomb 
catastrophe: the dimensionless reaction rate vs. time. Dotted curve, the Debye theory (1'2) (no 
screening and similar particle correlation); dashed curves, the solution of the kinetic equations 
incorporating these correlations but neglecting screening; solid curves, screening is taken into 
account. Parameters L = 5, D A = DB. Curves 1-3 correspond to dimensionless time 101, 10 2, 
10 5 , respectively. 
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In its turn, as follows from Eq. (20), the nonmonotonic behavior of 
Y(r, t) results in a similar behavior of the reaction rate K(t) in time 
(Fig. 10). The local maximum of K(t) observed at t = 101 (for a given L) 
for different initial concentrations likely arises due to the initial conditions 
used, which do not take into account peculiarities of the spatial distribu- 
tion of charged particles: a more adequate one would be a quasiequilibrium 
pair distribution with incorporated potential screening. 

The role of the nonequilibrium charge screening is emphasized by 
calculations neglecting such a screening, i.e., when Eqs. (26) are omitted 
and Uv = L/r is postulated. In this case mutual repulsion of similar particles 
accompanied by the attraction between dissimilar particles are charac- 
terized by the infinite interaction radius between particles, which leads 
immediately to the Coulomb catastrophe--an infinite increase in K(t) in 
time shown in Fig. 9. This effect is independent of the choice of the initial 
defect distributions for both similar and dissimilar particles. On the 
other hand, an incorporation of Coulomb screening makes Eqs. (2)-(4) 
asymptotically valid for any initial distribution of particles. 

4. CONCLUSION 

In the present paper a novel formalism of the many-point particle den- 
sities is applied to study many-particle effects and charge screening in the 
kinetics of bimolecular reactions A + B ~ 0 with Coulomb interaction 
between reactants. It is demonstrated that this screening, unlike standard 
Debye-Hiickel theory, has essentially nonequilibrium character. For equal 
reactant mobilities (the so-called symmetric case) neglect of this fact leads 
to the Coulomb catastrophe (an infinite increase of the reaction rate in 
time), whereas its proper incorporation into kinetic equations results in 
both the moderate increase of the reaction rate at intermediate times and 
nonmonotonic behavior of the joint correlation functions of dissimilar 
reactants. 

In the asymmetric case (DA = 0) similar immobile particles A become 
aggregated in the course of reaction and, as t ~ Go, the relevant reaction 
rate no longer has a steady state, but increases in time, leading to 
accelerated particle recombination. We hope that the theory developed in 
the present paper could be useful for interpreting experimental data on 
processes in such dense Coulomb systems as plasmas, ionic solids and 
liquids, and electrolyte solutions. 
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