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Abstract 

We demonstrate the equivalence of the effective-medium approach and the modified Smoluchowski equations for the 
reaction rate of the bimolecular A + B ~ B process. This fact encourages us to use the latter, flexible formalism for a study 
of complicated spatial distributions of traps. 

1. Introduction 2. Two basic approaches 

The effective medium theory (EM) [1,2] is nowadays 
widely used for the description of bimolecular, diffusion- 
controlled reaction kinetics, e.g., for Frenkel defects in 
irradiated solids, A + B ~ 0, and for energy transfer, A ÷ 
B---. B, in solids from donors A to unsaturable acceptors 
(sinks) B [3]. In fact, this approach is based on Maxwell 's 
old idea [4] of considering a whole reaction volume as a 
homogeneous reactive medium containing a number of 
isolated point defects. The reaction rate is here calculated 
using a coupled set of equations for diffusion/reaction 
inside the reaction sphere around the defect and for those 
outside this region where there is no reaction. 

Another approach to the A + B ~ B reaction with im- 
mobile sinks B has been presented in Refs. [5-7]. The 
latter formalism is based on the modified Smoluchowski 
(MS) equation derived using the Kirkwood superposition 
approximation for three-particle correlation functions [6-8]. 
It could be applied to any spatial distribution of sinks. In 
this Letter we compare the two approaches and show that 
EM theory is a particular case of MS theory. We also 
compare these two theories with the results for the exact 
Wigner-Seitz model developed for a regular (periodic) 
sink distribution [9]. 
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The EM theory characterizes an isolated sink by the 
reaction (trapping) radius r 0 which is surrounded by the 
sphere of a larger radius R. It is assumed that no other 
sinks are present within this large sphere, 0 __< r < R, i.e., 
there is a depletion of sinks in this region. Following Ref. 
[2], one gets the following kinetic equations for the con- 
centration of defects A at the distance r from a sink 
placed at the coordinate origin 

D A A C ( r ) + A = O ,  r o <r <_ R  , (1) 

D A A c ( r ) +  A e f f - k e f f n B c ( r ) = O ,  r >  R. (2) 

Here a is the Laplace (diffusion) operator, D A is the 
diffusion coefficient, A, Aef e are the defect production rates 
within sphere R and in the surrounding effective medium, 
respectively, kef f is the effective reaction rate sought for, 
and n B is the sink concentration. Since defects AB are not 
spatially correlated at long relative distances, the local 
concentration asymptotically approaches the average, 
macroscopic concentration: c ( r ~  ~ ) = 3 .  If there is no 
defect production within a recombination sphere of radius 
r 0 '  /~eff = /~(1 - -  (1))  where reaction volume's fraction cov- 
ered by sinks is q~ = 4 3 Hereafter we neglect the "~Tf ron  B. 
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difference between A and /~tef l  I assuming @<< 1. The 
quasi-steady reaction rate is determined by a flux of 
particles A over the reaction sphere 

~r ~c( r )  ] 

where /3 is the parameter of the radiation boundary condi- 
tion (a grey recombination sphere). 

In its turn, in the MS approach we start from the 
following steady-state kinetic equations for the joint, sink- 
particle correlation function [5-7] 

A 
DAAY(r  ) + ke f rnsY(r ) [ l  - Z ( r ,  r0) ] + --(1 - g ( r ) )  

C 

= 0, (4) 

where the functional Z(r, r o) in Eq. (4) takes into account 
spatial correlations between sinks. It reads [8] 

l r +  r~ 

= - -  f X B ( p ) p d p ,  (5) Z( r, ro) 2rro ,~<~ 

and the reaction rate is 

Here Xe(p)  is the trap-trap, joint correlation function. It 
is normalized by the unity as the relative distance between 
sinks p ~ ~c. From the law of mass action one gets that at 
the saturation, (t ~ ~c), the macroscopic (average) concen- 
tration of particles A is ~ = A/kol~.nt~. 

These equations permit us to get the EM model as the 
particular case of MS theory. Indeed, let us assume that 
there are no sinks at r <_ R: 

X ( p ) =  O ( r - R ) ,  (7) 

where O(z )  is Heaviside step-function: O( z) = 1, - > O, 
and zero otherwise. Substitution of Eq. (7) into Eqs. (4) 
and (5) yields [5-7] 

A 
DAAY(r  ) + ke,.rn~Y(r ) + = [ I  - Y( r ) ]  = 0, 

C 

% N r _< R, (8) 

A 
D A A Y ( r ) + w [ 1 - Y ( r ) ] = O .  r > g .  (9) 

C 

Taking into account that Y(r) = c( r ) / ? ,  i.e., Y( r ~ z )  
= 1, and that ? = A/k~frn B, one immediately arrives at 
Eqs. (1) and (2) of the EM theory. This demonstrates that 
MS and EM theories are in fact equivalent. 

For a random trap distribution, R = r 0, one gets the 
reaction rate with the correction linear in the trap concen- 
tration [5]: 

k~t.r=41rDAro(1 + 1.53@). (10) 
Let us now consider another, regular sink distribution 

assuming that R = R  8 where R B = n ~  ~/3 is the mean 
distance between traps. Employing Eqs. (I) and (2) (or 

Eqs. (4)-(6)), both EM and MS approaches here yield the 
sink concentration correction to the reaction rate 

k~,-,. = 4arDAro(1 + 3.9@~/3), (11) 

which is proportional to n t/3. The exact solution for this 
case has been given earlier using the Wigner-Seitz model 
[9] well-known in the band structure theory of crystals (see 
also Ref. [10]) 

ken, = 4"rrDAro(1 + 1.85@i/3). (12) 

Note that the only difference between Eqs. (11) and 
(12) lies in the numerical co-factor. In fact, the discrep- 
ancy arises from our choice of the parameter R; these 
equations would coincide if R = 0.69R B. The latter esti- 
mate of the effective radius R seems to be more exact than 
just nB L/3 keeping in mind that each trap in a regular 
distribution is surrounded by the reaction sphere and such 
the spheres should not significantly overlap. 

3. Conclusion 

We have demonstrated for the first time the equica- 
lence of the effective medium and modified Smoluchowski 
equations and applied them to the particular cases of the 
random and regular (periodic) sink distribution. This 
equivalence is not surprising since the latter theory is also 
based on the effective medium ideas. The advantage of the 
modified Smoluchowski theory is that it allows one easily 
to treat any spatial distribution of sinks. This will be 
demonstrated in a separate publication [7]. 
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