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Abstiract

The effect of non-equilibrium charge screening in the kinetics of the one-dimensional, diffusion-
controlled A 4+ B — 0 reaction between charged reactants in solids and liquids is studied. In-
correctness of static, Debye-Hiickel theory is shown. Our microscopic formalism is based on the
Kirkwood superposition approximation for three-particle densities and the self-consistent treat-
tment of the electrostatic_ interactions defined by the nonuniform spatial distribution of similar
and dissimilar reactants treated in terms of the relevant joint correlation functions. Special at-
tention is paid to the pattern formation due to a reaction-induced non-Poissonian fluctuation
spectrum of reactant densities. This reflects a formation of locse domains containing similar
reactants only. The effect of asymmetry in reactant mobilities (D4 = 0, Dp > 0} contrasting
the traditional symmetric case, i.e. equal diffusion coefficients, (Da = Dp) is studied. In the
asymmetric case concentration decay is predicted to be accelerated, n{f) « 7%, a = 1/3 as
compared to the weli-established critical exponent for fluctuation-controlled kinetics in the sym-
metric case, @ = 1/4 and/or the prediction of the standard chemieal kinetics, & = 1/2. Results
for the present microscopic theory are compared with the mesoscopic theory.

1 Introduction

Bimolecular A + B — 0 reactions are quite common in condensed matter physics and physical -
chemistry; e.g. they occur between primary radiation defects of two types, 4 and B, which re-
combine when they approach each other during diffusion walks to within some critical distance ry.
These particles (called Frenkel defects in solids and/or electrons and radicals in liquids) could be
neutral or charged.

Many-particle effects caused by the spatial fuctuations of the reactant densities have been -
intensively studied in recent years in the kinetics of bimolecular chemical reactions, including the
above-mentioned A+ B ~— 0 reaction. A number of quite different techniques and methods were
developed for this purpose, including direct computer simulations, a mesoscopic approach, the
scaling. as well as wicroscopic theory - see review articles [1, 2], a monograph [3]) and proceedings
of the conference [4]. These studies clearly demonstrated that the kinetic laws established long ago
in standard chemical kinetics [5] could be violated, usually at high particle concentrations/long
reaction times. In particular, the asymptotic (t — o0) concentration decay rate turas out to be
n{t) o« t~%4, where d < 4 is the spatial dimension, i.e. it is slower than the one in standard
chemical kinetics, @ = 1/2,1 and 1 for d = 1,2 and 3, respectively. This effect, called sometimes
‘abnormal kinetics' - abnormal from the standard point of view - is dlrectly related to the reaction-
induced non-uniform reactant distribution wich is in contrast to the main prediction of chemical
kinetics that all reactants are well stirred and the reaction volume is homogeneous. As a result,
modern chemical kinetics uses the language of critical ezporents, correlation lengths, etc similar to
the physics of critical phenomena. '

Progently almost all studies of fuctuation-controlled cffects deal with neutral, non-interacting
particles thus neglecting effects caused by their interaction. [n s paper, we study many-particle
effects between charged reactants focusing on the dynamical Coulomb potential screening in the
A+ B — 0 reaction. ‘
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2 Kinetic equations

The basic equations of our microscopic theory for intoracting particles have heen derived and
discussed recently for & = 3 for the cases of Coulomd {6] and elastic (U(r) o L/7") {7] interactions.
Now, based on results of our review article [2], we generalize these equations for arbitrary space
dimension d. This helps to show peculiarities in the transition to low dimensions.

Use of the Kirkwood superposion approximation {8] for decoupling the infinite hierarchy of equa-
tions for the correlation functions leads to a minimum set of varjables describing the fluctuation-
controlled reaction kinetics. They are: macroscopic concentrations, ng = ng = n(t), and three
kinds of joint correlation functions [1, 2] - two for similar particles, X,(r,t), ¥ = A, B and a third
one for dissimilar particles, ¥ (r,t), where r is the relative distance between two particles. These
functions describe a spatial distribution of pairs AA, BB and AB, respectively and are analogous
to the radial distribution function In statistical physles of dense gases and liquids [8], The phys-
ical meaning of these correlation functions is the following f2, 6} C"(f)(r,t) = n()X a(r,t) and
ng(r,t) = n(1)¥ (r,t) are mean densities of particies A and B, respectively at the relative distance
r provided that a probe particle A is in the coordinate origin. Introducing for simpiicity a new
function X (r,£) = (Xa(r,t)+ Xp(r,)) /2 the basic set of kinetic equations read:

) Koy, K0 =74 it 0
Y (r,1)/8t = Vi(r,t) — 2{) K ()Y (7, adx]1, (2)
Jr Y= (D4 + POV () 4 AV {10V (r 10}, {3)
8X,(r,1)/8t = Vi, (r,1) - 2n(t) K (1) X, (r, )Ja[Y], (4)
f(r,t) = 2D, {VX.,(r 1)+ VUL (r. )X (7, 0)} . (5)

In Egs.{1) to (5) the black-sphere recombination model is assumed implicitly: any AB pair
recombines instantly when two reactants during their diffusive walks approach each other to within
some critical distance rg {1, 2]. This fact is incorporated into the (Smoluchowski) boundary condi-
tion for the correlation function of dissimilar particles; Y (r < rg,t) = 0 in Eq.(2). This correlation
function defines the quantity of primary importance - the reaction rate K'(¢) which is a flux of
particles over the recombination sphere’s surface (74 = 2,27, 47 for d = 1,2, 3, respectively). Fora
finile rg the reaction rate reads :

Kt} = yar§ 18Y (r, 1)/ 07 |r=rq-

The noun-linear terms in Egs. (2),.(4) containing the functionals Jy{Z] arise directly from the
Kirkwood approximation [3, 8], Their expressions for d = 1,2,3 are given in ref.{2]. In particular,

J1{Z] = (Z('n“ -+ T[],i) + Z([T’ - Tol,t))/z —-1. (6)

Expressions for the flux densities j(r,t) and j,(r,t} (8 = 1/kpT) are also non-linear since the
effective potential energies U{ ,(r,?) have contributions of both direct { Ay pair) and indirect, lateral
particle interactions through surrounding particles. The technique for their calculation in the case
of a short-range potential has been discussed in ref.{7}, whereas that for the Coulomb potentials in
ref.[6]. '

Low-dimensional (d = 1,2) systeras with Coulomb interaction reveal a peculiarity which allows
us to reduce the number of independent variables and to simplify the kinetic equations. Namely,
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we can do the limiting transition rg — 0 retaining the finite reaction rate. Physically this means
that the reaction rate is governed by the effective radius. This radius is the largest one of the
scale lengths in the system. For the Coulomb systems such a scale is called the Onsager radius,
R = ¢?/ckpT [6]. This is a distance at which the thermal energy equals the attraction energy; when
approaching to within R two reactants cannot separate and thus jnevitably recombine. Usually
R >> rg and thus R determines the reaction rate. Neglecting many-particle effects, the latter has
a very simple form: K = 4xDRe;s [2, 5] In the limiting case of rg — 0 the functional J4{Z] in
eqs.(2),(4) is greatly simplified, Jq{Z]=Z(r,t)-1. e

The recombination kinetics is defined by the following dimenstonless parameters: {i) the initial
particle concentration n{t = 0) = n{0), (i) the purtial diffusion coeflicient & = D4/ (note that
dimensionless diffusion coefficients are related by the condition Dg + Dg = 2, ie. Dy = 2x, -
Dgp =21 - k), (i) the capillary radius r, (in the 1d case). For niore details see [3, 10}

3 Results

3.1 Concentration decay

The kinetics of the concentration decay has been calculated for high initial concentration n{0)=1
and long dimensionless time, { = 108. At this moment particle concentration drops by three orders
of magnitude. {Further concentration decay hardly could be measured cxperimentally.) To make
results more obvious, in Fig.1 we plotted not the very kinetic curves, n = n(t), but their slopes on
a logarithmic scale which defines the so-called current critical exponents

d lnn(t} -
o) = dnt ’ ‘ {7)

To demonstrate the importance of the effect of non-equilibrium charge screening neglected in
many previous studies, we present results for three different approximations as follows.

(i) The traditional, Debye-like treatment of the reaction kinetics with unsreened Coulomb in-
teraction {8].

Many-particle effects are. neglected, the kinetic equations arise due to linearization of eguations
for the correlation functions. As a result, the equation for the correlation function of similar
particles X,(r, 1) no longer affects the kinetics. In fact, Lhe latter is defined entirely by the joint
cotrelation function of dissimilar particles obeying the simple kinetic equation

oY (r,t) _ @ 3 8 } - .
| {8 = LY+ Y (05000 (®)
where U(r) = ~1/r is the dnscreen_ed Coulomb potential. After linearization of a set of kinetic

equations, their solution no longer depends on the partial diffusion coefficient & {solid and dashed
lines in Fig.1). At long times the solution of Eq.(8) is practically defined by the diffusion length .
£ = V1, i.e. the decay kinetics obeys the ’classical’ algebraic law, a(t) o £, a = 1/2.

(it) The complete set of Eqs. (1} to (6) incorporating many-particle effects (via non-linear
terms) but with linearized potentials, Us(r, ) = Ug(r,t) = -U(r,t) = 1/r.

In this intermediate a.pproxima.tion the kinetics under study begins to depend on the mobility
parameter 5 but asymptotically it still follows the kinetics known for neutral, non-interacting
particles with U(r) = 0. - ’

(iii) The complete set of kinetic equations is combined with rion-equilibrium treatment of charge
screening making now no linearization.

The dimensionless capillary radius was chosen as r = 0.1. (Its reduction to the value of 0.01
results in a small, logarithmic correction which does not affect the critical exponent.) Curve 1 in
Fig.1 shows that in the time interval considered the critical exponent rather rapidly approaches
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% FIG. 1. The eritical cxponent characterizing the sigebraic con-
centration decay, Eq. {%), as a function of dimensionless reaction
time. Solid curves——symmetric resctant mobilities, D =0,
dashed carves—asymmetric mobilities, D, =0. Dotted fines show
the two expecied asymptotes: a=j and § Curves | corespond to
the Debye theory, curves 2 lo a solution of the kinetic Eqs. {1 )~ ;
{ &) incarparating spatial feactant carrelations but neglecting dy-
namical charge screeaing, and curves 3 ta the case when all scveen- i
Ing cffects ace incorporaicd.
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its limiting 'classical’ value of 1/2. Curves 2, incorporaling many-particle effects, approach their
quasi-steady-state after nearly the same time but their further approack from above to another
asymptote wich a = 1/4 has a logarithmically slow character. For example, for the symmetrical
mobilities a{t = 10%) = 0.264. In the asymmetric mobility case the deviation from the asymptote
is larger, a(f = 10%) = 0.280. Such a behaviour results from the long-range nature of the Coulomb
interaction between particles. '

Strictly speaking, the & = 1/4 law of the fluctuation-controlied kinetics in v d = 1is proved only
for non-interacting particles [1, 2, 4]. It was generalized for interacting particles provided that their
interaction potential is short-range and does not lead to the similar-particle collapse [3]. In fact,
this law has been proved for the case when the largest length parameter in the problem is the
diffusion length, which is the case if the interaction potential was a Debye- Hiickel like. However,
the uncreened Coulomb potential, U(r) = —1/r, has an infinite interaction radius and thus defines
the asymptotics of the correlation functions at large distances. The approach to the asymptotic
character is very slow, it has diffusion-controlled character. Moreover, in the asymmetric case there
is no mechanism of smoothing the fluctuations of the immobile patticle distribution at all. This is
why the results of our case (ji) are far from trivial.

Lastly, curves 3 in Fig.1 show a considerable difference for the symmetnc and asymmetric
mobilities which is more pronounced than that in curves 2. However, due to a very slow approach
to their limiting values it is not clear whether and by how much the relevant critical exponents
differ as ¢t — co. Analytical arguments are given in ref. [10] that in the symmetric case a = 1/4
(as for non-interacting particles), whereas for asymmetric mobilities the critical exponent is larger
and the reaction occurs respectively faster, @ = 1/3. Note that a similar reaction acceleraiion
between charged particles with asymmetric mobilities was predicted earlier in the 3d case [6}. We
found there that o = 5/4, to be compared with @ = 1 known in the standard chemical kinetics,
and a = 3/4 in the fluctuation-controlled theory. Analogously, in 2d [9] we predict @ = 1/2 and
3/4 for symmetric and asymmetric mobilities, respectively. Consider now briefly the kinetics of the
pattern formation in the particle spatial distribution.

3.2 Spatial reactant distributions

Figure 2 shows the time development of the joint correlation functions (note the logarithmic scale
or the z axis and the same scale for immobile similar particles X4). A key role of the diffusion
length £(¢) = v/ is evident here: the characteristic relative distance ' at which no AB pairs exist
(Y(r < £,1) << 1) increases in time as 4/%: &' increases by an order of magmtude as time increased
by twe orders of magnitude, £ = £(1).

Irrespective of the & value, the correlation functions of mobile particles, X, (r,1), have a platean
at the same scale » < £ and decrease rapidly to zero at r < 1. (This comes from the repulsion of
similar particles at the relative distances which are short compared to the Onsager radius). In the
asymmetric case the correlation functions of similar immobile particles have singularities at short
7, where X 4(r,t) drops by several orders of magnitude in a narrow interval r € (0,1).

A comparison of these results with earlier findings for non-interacting particles [11} shows their
remarkable similarity. The main difference lies in the depletion in the correlation functions of similar
mobile particles at short relative distances caused by particle repulsion, whereas for neutral particles
the correlation functions are finite as r — 0,For non-interacting particles and symmetric diffusion
such a behaviour of the correlation functions led to the conclusion that the patiern formation occurs
in a form of alternating domains of similar particles, A or B, with linear size £(t) [1, 2, 3]. This
reaction-induced reactant-structure greatly differs from the basic assumption of standard chemical
kinetics about well-stirred and homogeneous reactant distribution. In the domain structure reaction
occurs only at the boundaries of the domains of particles of different type. In the asymmetric
diffusion case for both non-interacting and interacting particles mobile B reactants remain randomiy
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distributed within their domains, whereas immobile A reactants form compact clusters - a kind of
"raisins in dough” [6, 11]. The 2d case will be discuss in detail in ref. [9].

4 Conclusions

We compare in the conclusion the main results of the mesoscopic [3] and the present, microscopic
formalism for the diffusion-controlled 4+ B — 0 reaction between charged particles in the 14 case.
The former theory claims that the critical exponents in the concentration algebraic decay is the
same for charged and neutral particles provided:

(i) similar particles (A4, BB) repel each other, and (ii) the pair interaction potential is not
divergent (e.g. the Debye- Hiickel potential).

Our microscopic theory generalizes this result (valid for the case of symmaetric particle mobjl-
ities) for the unscreened (divergent) Coulomb potential. Moreover, we have studied here the case
of asymmetric mobilities (D4 = 0, Dp > 0) and predicted reaction acceleration, i.e. an existence
of a new critical exponent, & = 1/3. We have also demonstrated that this peculiarity is a direct
consequence of the specific spatial disiribution of reactants studied by us in terms of the joint cor-
relation functions for both similar and dissimilar reactants, A large discrepancy between the two
approaches takes place for the accumulation kinetics under permanent particle source {9, 10},
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