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A microscopic lattice gas model for the catalytic COþO2 reaction on Pt(110) subject to external periodic
forcing is studied by means of cellular automaton simulations. Harmonic resonance, subharmonic and
superharmonic entrainment, quasiperiodic as well as chaotic behavior are among the observed phenomena in
this model when the gas phase concentration of CO as an external control parameter is periodically varied and
interacts with the self-oscillating reaction system.

Harmonic resonance, subharmonic and superharmonic
entrainment, quasiperiodic and chaotic behavior are well
known to occur in nonlinear self-oscillating systems which
are subject to periodic forcing. Harmonic resonance occurs if
the periodic forcing signal has a frequency nex very similar to
the one of the undisturbed system n0 and results in an amp-
lification of the oscillations. In this case the so-called phase
locking occurs, i.e. the system oscillates with the response
frequency nr ¼ nex with a constant phase difference to the
external signal. In the case of the subharmonic and superhar-
monic entrainment the ratio of the frequencies is given by
nr/nex ¼ Tex/Tr ¼ p/q where p and q are generally small inte-
gers. nr (Tr) and nex (Tex) are the frequencies (periods) of the
response signal of the system and the external forcing signal,
respectively. For quasiperiodic and chaotic behavior no simple
and fixed relation exists between nr and nex . These phenomena
have been observed and theoretically investigated in a large
number of systems including Josephson junctions, nonlinear
electric conductors, hydrodynamic systems, biological oscilla-
tors, homogeneous and heterogeneous1,2 chemical reactions.
Although there exists a large number of studies the field of
forced non-linear systems is still open.
In this report we concentrate on the heterogeneously cata-

lyzed COþO2 reaction on the Pt(110) surface. The reaction
has been investigated in great detail (for a review see ref. 3)
and especially the behavior under periodic forcing has been
experimentally studied about 10 years ago by Eiswirth and
Ertl.1 In this study all the above mentioned resonance phenom-
ena could be observed with the exception of chaos because of
limited experimental resolution. Model calculations have been
performed using a phenomenological approach via the mean
field (MF) approximation by Krischer et al.4 In this study
the so-called three-variable model5 for the COþO2 reaction
which describes the macroscopic kinetics correctly has been
extensively investigated under periodic forcing. The main
attention was attributed to the bifurcation structure and the
details of the individual entrainment bands (Arnol’d tongues)
in this three-variable model which is represented by a system
of three coupled non-linear differential equations.
Quite in general almost every theoretical study of forced

non-linear oscillators is based on idealized systems which can
be represented by rather simple systems of equations. In addi-
tion these models generally do not consider fluctuations and
spatial correlations, although these are known to occur and

to have a large influence in real systems. We here present a cel-
lular automaton (CA) simulation of a lattice gas model for a
self-oscillating system6–10 subject to external periodic forcing.
Because of the simulation procedure the model contains fluc-
tuations and spatial correlations by its very nature. We show
that it is possible to use such simulations for the investigation
of systems which exhibit very complex temporal behavior. We
do this by reproducing first the experimental results given in
ref. 1 at a qualitative level without using any parameter taken
from or fitted to experiment. This is the obligatory prior con-
dition in order to get physically clear and self-contained
results. We then show that additional entrainment bands result
from our model simulation which were not detected in experi-
ments because of experimental limitations.
The model6–10 reproduces correctly oscillatory regimes for

both Pt(100) and Pt(110) surfaces by changing only one para-
meter (sticking coefficient). Experiments on the CO oxidation
on Pt(100) show irregular oscillations in the reaction rate in
the form of wave trains, whereas regular and synchronized
oscillations are generally found on Pt(110). In addition, no reg-
ular patterns or oscillations on the mm scale have been
observed on Pt(100) in the domains between the traveling reac-
tion fronts, whereas on Pt(110) a rich variety of spatiotemporal
patterns has been found. Resonance phenomena for the two
surfaces are also quite different. These exemplary results
should demonstrate that it is no case easy to predict or repro-
duce experimental findings. Thus serves as a justification for
the here presented studies.
In our model for the periodically forced self-oscillating CO

oxidation on Pt(110) we use the square lattice as a model for
the catalyst surface with the lattice constant a ¼ 1. Each lattice
site stands for an individual surface atom which can belong to
the a (reconstructed, 1� 2) or b (non-reconstructed, 1� 1)
phase. The gas phase consists of particles A (CO) and B2

(O2) with the dimensionless concentrations y and 1� y, respec-
tively. Molecules A adsorb molecularly onto the surface with
rate y independent of the phase the adsorption site belongs
to. Molecules B2 adsorb dissociatively with rate 2(1� y) or
(1� y) on sites belonging to the b or the a phase, respectively.
For the B2 adsorption directly on the phase border the geo-
metric mean of these rates is used. This qualitatively agrees
with the experimentally obtained ratio of the O2 sticking coef-
ficients on the different phases. In addition A is able to diffuse
via hopping to nearest neighbor (NN) sites with rate D and to
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desorb from the surface with rate k. The growth and decline of
the individual phases occurs only directly at the phase border.
Consider two lattice sites at the phase border where one site
belongs to the a phase and one to the b phase. If at least
one site is covered with A the b phase grows with rate V by
switching the site in the a state into the b state. If no A is pre-
sent at the phase border the b site is turned into an a site with
the same rate. Therefore the growth of the phases is modeled
as a phase border propagation. This phase border propagation
mechanism mimics the growth of the b phase because of the
larger adsorption energy of CO on the 1� 1 phase as on the
hex phase.
The above described transitions are written in the more

common form of reaction equations, which are given below:

COðgÞ þ �w Ð COðaÞ;
O2ðgÞ þ 2�a ! 2OðaÞ;
O2ðgÞ þ 2�b ! 2OðaÞ;
COðaÞ þ �w ! �w þ COðaÞ;

COðaÞ þOðaÞ ! CO2ðgÞ þ 2�w

�a Ð �b:

Here * stands for a free adsorption site, w stands for either a or
b and (a) or (g) for a particle adsorbed on the surface or in the
gas phase, respectively.
The periodic forcing is introduced via a sinusodial variation

of the A gas phase concentration y. Note that in this case also
the concentration of B2 varies. We use randomly distributed
phases with coverages of Ya ¼ Yb ¼ 0.5 as the initial lattice
condition. It has been shown elsewhere6,7 that these initial con-
ditions lead to a dynamically heterogeneous stable state which
allows us to neglect nucleation as the process for the formation
of initial phase defects. In the present study we use y ¼ 0.49,
D ¼ 300, k ¼ 0.1 and V ¼ 1 as the standard parameters if
not stated differently. The only control parameters are the
amplitude S and the frequency o of the varied gas phase con-
centration y of A as the external forcing parameter. For details
of the model and the simulation procedure see refs. 6–11.
This microscopical model is able to explain some of the most

important experimental results for both surfaces, Pt(100) and
Pt(110), such as critical coverages,9,12,13 local oscillations and
pattern formation,6,7 global synchronization mechanisms,8

and the resulting transition into the limit cycle.6,8 Our model
is the first one for catalytic reactions on reconstructing single
crystal surfaces with completely local definitions of the elemen-
tary reaction processes. By a local definition is meant that all
possible microscopic transitions take place on only one (mono-
mer adsorption and desorption) or two nearest-neighbor lat-
tice sites (dissociative dimer adsorption, diffusion, reaction,
reconstruction). An adapted version14 of the model for the
NOþCO reaction on Pt(100) is able to describe the Feigen-
baum transition into chaos which has been observed in
experiment.15

As a first and very important result we get excellent agree-
ment with experiment.1 We ran more than 800 independent
simulations in order to confirm the phase diagram of the
entrainment bands given in Fig. 1 of ref. 1. The resonance
behavior regarding the phase and the amplitude in the harmo-
nic entrainment band can be described as well.
Outside the region of harmonic entrainment we detect not

only two subharmonic (1/2, 2/3) (see Fig. 1) and seven (4/1,
7/2, 3/1, 5/2, 2/1, 5/3, 3/2) superharmonic entrainment
bands, which were previously found in experiment,1 but also
three additional (4/3, 8/3, 9/2) superharmonic entrainment
bands. There seem to be additional bands for larger q > 3
but the data are not completely conclusive in this case.
It should be mentioned here that a quantitative comparison

of the phase diagram resulting from experiment1 and from our

present CA simulation is not quite correct. In the experiment1

one has obtained a periodic forcing of the system via a low-
amplitude (about 1%) modulation of the partial pressure of
O2 . As already mentioned above, the periodic forcing in our
paper is introduced via a variation of the parameter y. It
should be noted that in this case also the concentration (and
partial pressures) of A ¼ CO, y, and B2 ¼ O2 , (1� y), vary.
The differences between the results from this model and experi-
ment appear, however, to be small, although definitely present.
The modulation of the parameter y also lies in the low-ampli-
tude region (about 1%). The ranges of phase locking in the dia-
gram of Fig. 1 of the present paper and Fig. 1 of ref. 1 are also
quite similar. Although the number of independent simula-
tions was quite large in our paper (more than 800) this is insuf-
ficient to determine the boundaries of the phase diagram
precisely. This also applies to the phase diagram resulting from
experiment, Fig. 1 of ref. 1: both diagrams can only roughly be
determined. For this reason we consider further information
with a better quality and this is the time series in the form as
given in Fig. 5 of ref. 1. Our essential result is here that we
did not find from the CA simulation model specific effects.
All phenomena correspond to the general picture of nonlinear
dynamics. To illustrate this point let us restrict first to two
examples: the superharmonic entrainment bands (5/3) and
(2/1), which were clearly seen also in experiment.1 Addition-
ally we consider the superharmonic entrainment band (4/3),
which has not been detected in experiment.1 We are going to
show that the superharmonic entrainment band (4/3) simply
represents a case which again has nothing to do with the
definition of the model.
In Fig. 2 a time series of the superharmonic 5/3 entrainment

is shown as an example. Because of fluctuations inherent to the
system the heights of the individual response amplitudes show
variations but the basic structure of the response signal can be
clearly seen in the time series as well as in the power spectrum.
Outside the entrainment bands a constant phase relationship
between the perturbation and response signal does not exist.
The phase relation is continuously shifted either forward or
backward from period to period. This causes a complete phase
shift within a certain number of cycles and leads to beats in the
response signal. The beat period is the time required for a
phase shift of one complete period, i.e. the time in which the
phase difference returns to its initial value.
In Fig. 3 such a beat period is shown for a simulation in the

region of the 2/1 entrainment edge. In the 2/1 entrainment
band one has alternating large and small amplitude signals
and 12 forcing periods are attended with 24 response periods.
In the case shown in Fig. 3 the large (first) amplitude signal

Fig. 1 Phase diagram showing phase locking response (gray) as a
function of amplitude (S) and frequency of the y perturbation
(y ¼ 0.49, D ¼ 300, V ¼ 1).
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starts to decline and the small (second) amplitude signal starts
to grow until the proportions are reversed. After 12 forcing
periods the phase relation has returned (not exactly but within
our resolution) to its initial value. However, this time the
response signal runs only through 23 instead of 24 periods,
i.e. one period is suppressed on account of the continuous shift
of the phase difference. This is the phenomenon of the so-called
frequency-pulling. The ratio n:2n� 1 (e.g. 12:23 as shown in
Fig. 3) holds for the high-frequency edge of the 2/1 entrain-
ment band. At the other (low-frequency) edge of the 2/1
entrainment band the phase difference is shifted to the other
direction. This then leads to a ratio of n:2nþ 1, e.g. 12:25
which has been observed in experiment.16

The individual entrainment bands widen with increasing
amplitude of the forcing signal.4,16 Unfortunately in the experi-
ment the 4/3 entrainment band has not been detected due to
experimental limitations. However, it was shown in the theore-
tical analysis of the bifurcation structure of the three-variable
model4 that the 4/3 entrainment band should exist and that
there is significant overlap of the entrainment bands between
1/1 and 3/2 for forcing amplitudes sufficiently widening the
individual bands. As shown in Fig. 4, our model supports
the existence of the 4/3 entrainment band as well as the over-
lap of the individual entrainment bands. After the induction
period the system exhibits 4/3 entrainment for a short time.
Then a very fast transition into the 3/2 entrainment occurs
which is stable for at least T ¼ 5000. Therefore it may be very
difficult to detect the 4/3 entrainment band in experiment.

In this paper we have shown that our self-consistent stochas-
tic model is able to correctly describe the experimentally
observed resonance phenomena without any parameters taken
from experiment. It therefore can be used as an addition to
experiment for the qualitative investigation of heterogeneous
surface reactions.
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Fig. 3 Time series and power spectrum of quasiperiodic oscillations
near the high-frequency 2/1 entrainment edge (y ¼ 0.49, D ¼ 300,
V ¼ 1, S ¼ 4.0� 10�3, o ¼ 2p� 5.05� 10�3).

Fig. 4 Time series and power spectrum of a simulation within the
overlapping region of the 4/3 and 3/2 entrainment band (y ¼ 0.49,
D ¼ 300, V ¼ 1, S ¼ 7.5 � 10�3, o ¼ 2p� 6.75� 10�3).

Fig. 2 Time series and power spectrum of 5/3 superharmonic
entrainment (y ¼ 0.49, D ¼ 300, V ¼ 1, S ¼ 3.5� 10�3, o ¼ 2p�
5.7� 10�3).
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