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The two-level model for a double quantum dot coupled to two leads of spinless electrons, which is ubiqui-
tously used to describe charge oscillations, transmission-phase lapses and correlation-induced resonances, is
considered in its general form. The model features arbitrary tunnelling matrix elements among the two levels
and the leads and between the levels themselves �including the effect of Aharonov-Bohm fluxes�, as well as
interlevel repulsive interactions. We show that this model is exactly mapped onto a generalized Anderson
model of a single dot, where the electrons acquire a pseudospin degree of freedom that is conserved by the
tunnelling but not within the dot. Focusing on the local-moment regime where the dot is singly occupied, we
show that the effective low-energy Hamiltonian is that of the anisotropic Kondo model in the presence of a
tilted magnetic field. For moderate values of the �renormalized� field, the Bethe ansatz solution of the isotropic
Kondo model allows us to derive accurate expressions for the dot occupation numbers, and henceforth its
zero-temperature transmission. Our results are in excellent agreement with those obtained from the Bethe
ansatz for the isotropic Anderson model, and with the functional and numerical renormalization-group calcu-
lations of Meden and Marquardt �Phys. Rev. Lett. 96, 146801 �2006��, which are valid for the general
anisotropic case. In addition we present highly accurate estimates for the validity of the Schrieffer-Wolff
transformation �which maps the Anderson Hamiltonian onto the low-energy Kondo model� at both the high-
and low-magnetic field limits. Perhaps most importantly, we provide a single coherent picture for the host of
phenomena to which this model has been applied.
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I. INTRODUCTION

The ongoing technological progress in the fabrication and
control of nanoscale electronic circuits, such as quantum
dots, has stimulated detailed studies of various quantum-
impurity models, where a few local degrees of freedom are
coupled to a continuum. Of particular interest are models
with experimentally verifiable universal properties. One of
the best studied examples is the Anderson single impurity
model,1 which describes successfully electronic correlations
in small quantum dots.2,3 The experimental control of most
of the parameters of this model, e.g., the impurity energy
level position or the level broadening due to hybridization
with the continuum, allows for detailed investigations4,5 of
the universal low-temperature behavior of the Anderson
model.

In this paper we study the low-energy behavior of a ge-
neric model, depicted in Fig. 1�a�, which pertains either to a
single two-level quantum dot or to a double quantum dot
where each dot harbors only a single level. The spin degen-
eracy of the electrons is assumed to be lifted by an external
magnetic field. Several variants of this model have been
studied intensely in recent years, in conjunction with a
plethora of phenomena, such as many-body resonances in the
spectral density,6 phase lapses in the transmission phase,7,8

charge oscillations,9,10 and correlation-induced resonances in
the conductance.11,12 Albeit being described by the same
model, no clear linkage has been established between these
seemingly different effects. The reason is due in part to the

large number of model parameters involved, which so far
obscured a clear physical picture. While some exact state-
ments can be made, these are restricted to certain solvable
limits,6 and are apparently nongeneric.11 Here we construct a
framework which encompasses all parameter regimes of the
model, and enables a unified description of the various phe-
nomena alluded to above, exposing their common physical
origin. For the most interesting regime of strong charge fluc-
tuations between the two levels, we are able to give �i� ex-
plicit analytical conditions for the occurrence of transmission
phase lapses; �ii� an explanation of the population inversion

FIG. 1. �Color online� A schematic representation of the double-
dot system, along with its reduction in the local-moment regime to
an effective Kondo model with a tilted magnetic field. �a� The
model system: two localized levels coupled by tunnelling matrix
elements to one another and to two separate leads. A constant mag-
netic flux induces phase factors on those matrix elements. Spinless
electrons residing on the two levels experience a repulsive interac-
tion. �b� The mapping onto a spinful generalized Anderson model,
with a tilted magnetic field and different tunnelling elements for
spin-up and spin-down electrons. �c� The low-energy behavior of
the generalized Anderson model is mapped onto an anisotropic

Kondo model with a tilted magnetic field, h� tot.
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and the charge oscillations9,10,13 �including a Kondo en-
hancement of the latter�; �iii� a complete account of the
correlation-induced resonances11 as a disguised Kondo phe-
nomenon.

After introducing the details of the double-dot Hamil-
tonian and discussing its experimental relevance in Sec. II A,
we begin our analysis by constructing a linear transformation
of the dot operators, and a simultaneous �generally different�
linear transformation of the lead operators, such that the
2�2 tunnelling matrix between the leads and the two levels
on the dots becomes diagonal �with generally different eigen-
values�. As a result, the electrons acquire a pseudospin de-
gree of freedom which is conserved upon tunnelling between
the dot and the continuum, as shown schematically in Fig.
1�b�. Concomitantly, the transformation generates a local
Zeeman magnetic field. In this way the original double-dot
model system is transformed into a generalized Anderson
impurity model in the presence of a �generally tilted� exter-
nal magnetic field. This first stage is detailed in Sec. II B and
Appendix A.

We next analyze in Sec. III the low-energy properties of
our generalized Anderson model. We confine ourselves to the
local moment regime, in which there is a single electron on
the impurity. The fluctuations of the pseudospin degree of
freedom �which translate into charge fluctuations between
the two localized levels in the original model� are determined
by two competing effects: the polarizing effect of the local
magnetic field, and the Kondo screening by the itinerant
electrons. In order to quantitatively analyze this competition,
we derive an effective low-energy Kondo Hamiltonian, using
Haldane’s scaling procedure,14 together with the
Schrieffer-Wolff15 transformation and Anderson’s poor man’s
scaling.16 This portion of the derivation resembles recent
studies of the Kondo effect in the presence of ferromagnetic
leads,17 although the physical context and implications are
quite different.

As is mentioned above, the tunnelling between the impu-
rity and the continuum in the generalized Anderson model is
�pseudo� spin dependent. This asymmetry results in two im-
portant effects. �a� The two local levels acquire different
renormalizations, which in turn generates an additional local
magnetic field.17 The latter field is not necessarily aligned
with the original Zeeman field that is present in the general-
ized Anderson model. �b� An anisotropy is produced in the
exchange coupling between the conduction electrons and the
local moment within the Kondo Hamiltonian. However,
since the scaling equations for the anisotropic Kondo
model16,18 imply a flow towards the isotropic strong coupling
fixed point, the low-energy behavior of the generalized
Anderson model can be still described in terms of two com-
peting energy scales, the Kondo temperature, TK, and the
renormalized magnetic field, htot. Our two-stage mapping,
double-dot ⇒ generalized Anderson model ⇒ anisotropic
Kondo model �see Fig. 1�, allows us to obtain analytic ex-
pressions for the original model properties in terms of those
of the Kondo model. We derive in Sec. IV the occupation
numbers on the two localized levels by employing the Bethe
ansatz solution of the magnetization of a Kondo spin in a
finite magnetic field.19,20 This solution also results in a highly
accurate expression for the conductance based upon the

Friedel-Langreth sum rule.21 Perhaps most importantly, it
provides a single coherent picture for the host of phenomena
to which our model has been applied.

Examples of explicit results stemming from our general
analysis are presented in Sec. V. First, we consider the case
in which the tunnelling is isotropic, being the same for
spin-up and spin-down electrons. Then the model is exactly
solvable by direct application of the Bethe ansatz to the
Anderson Hamiltonian.20,22 We solve the resulting
equations22,23 numerically and obtain the occupation num-
bers for arbitrary parameter values of the model, and in par-
ticular, for arbitrary values of the local Zeeman field. By
comparing with the occupation numbers obtained in Sec. IV
from the Kondo version of the model, we are able to test the
accuracy of the Schrieffer-Wolff mapping onto the Kondo
Hamiltonian. We find that this mapping yields extremely pre-
cise results over the entire local-moment regime. This ex-
actly solvable example has another virtue. It clearly demon-
strates the competition between the Kondo screening of the
local spin, which is governed by TK, and the polarizing effect
of the local field htot. This competition is reflected in the
charging process of the double dot described by the original
Hamiltonian. We next proceed to apply our general method
to the features for which the anisotropy in the tunnelling is
relevant, notably the transmission phase lapses and the
correlation-induced resonances.11 In particular, we derive
analytical expressions for the occupation numbers and the
conductance employing the mapping onto the Kondo Hamil-
tonian. These analytical expressions give results which are in
very good agreement with the data presented by Meden and
Marquardt,11 which were obtained by the functional and nu-
merical renormalization-group methods applied to the origi-
nal model.

Since our derivation of the effective low-energy Hamil-
tonian bears technical resemblance to recent studies of or-
bital Kondo correlations in single quantum dots,24,25 it is im-
portant to emphasize the different objectives underlying this
work. This paper aims beyond a mere demonstration that two
orbital levels coupled to a continuum can be tuned into an
SU�2� Kondo system. That observation is well known, and
has been exploited in numerous contexts �see, e.g., Refs.
26–29�. We study, however, the full crossover from a Kondo-
screened pseudospin to a fully polarized one, while keeping
track of the explicit parametric dependencies for the relevant
fields and couplings. No simplifying assumptions are intro-
duced after the initial generic two-level model6–11 is postu-
lated. The main goals of the investigation can be summarized
as follows. �i� To demonstrate that the formal correspondence
between an interacting two-level system and the Anderson
impurity model is more general than previously established.
�ii� To show that the competition between an effective field-
induced polarization and Kondo screening explains a number
of nontrivial properties of the system, such as phase lapses,
population inversion, and correlation-induced resonances.
These properties have been previously studied theoretically
as separate phenomena. �iii� To derive new analytical results
for these phenomena in terms of the linear conductance and
the charge distribution in the system.

As our treatment makes extensive usage of the exact Be-
the ansatz solutions for the impurity magnetization in the
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isotropic Kondo and Anderson models with a finite magnetic
field, all relevant details of the solutions are concisely gath-
ered for convenience in Appendix A.

II. THE DOUBLE-DOT SYSTEM AS A GENERALIZED
ANDERSON MODEL

A. The model

We consider spinless electrons in a system of two distinct
energy levels �a quantum dot�, labelled i=1, 2, which are
connected by tunnelling to two leads, labelled �=L ,R. This
quantum dot is penetrated by a �constant� magnetic flux. The
total Hamiltonian of the system reads

H = Hl + Hd + Hld, �1�

in which Hl is the Hamiltonian of the leads, Hd is the Hamil-
tonian of the isolated dot, and Hld describes the coupling
between the dot and the leads. The system is portrayed sche-
matically in Fig. 1�a�.

Each of the leads is modelled by a continuum of nonin-
teracting energy levels lying within a band of width 2D, with
a constant density of states �.30 The corresponding Hamil-
tonian is given by

Hl = �
k�

�kck�
† ck�, �2�

where ck�
† �ck�� creates �annihilates� an electron of wave vec-

tor k on lead �. The two leads are connected to two external
reservoirs, held at the same temperature T and having differ-
ent chemical potentials, �L and �R, respectively. We take the
limit �L→�R=0 in considering equilibrium properties and
the linear conductance.

The isolated dot is described by the Hamiltonian

Hd = �d1
† d2

† � · Êd · �d1

d2
� + Un1n2, �3�

where

Êd =
1

2
� 2�0 + � bei��L−�R�/2

be−i��L−�R�/2 2�0 − �
� . �4�

Here, di
† �di� creates �annihilates� an electron on the ith level,

ni�di
†di are the occupation-number operators �representing

the local charge�, U	0 denotes the Coulomb repulsion be-
tween electrons that occupy the two levels, �0±� /2 are the
�single-particle� energies on the levels, and b /2 is the ampli-
tude for tunnelling between them. The phases �L and �R,
respectively, represent the Aharonov-Bohm fluxes �measured
in units of the flux quantum 2
�c /e� in the left and in the
right hopping loops, such that the total flux in the two loops
is ���L+�R �see Fig. 1�a��.

Gauge invariance grants us the freedom to distribute the
Aharonov-Bohm phases among the interlevel coupling b and
the couplings between the dot levels and the leads. With the
convention of Eq. �4�, the coupling between the quantum dot
and the leads is described by the Hamiltonian

Hld = �
k

�ckL
† ckR

† � · Â · �d1

d2
� + H.c. , �5�

where

Â = �aL1ei�/2 aL2

aR1 aR2ei�/2�, � = �L + �R. �6�

Here the real �possibly negative� coefficients a�i are the tun-
nelling amplitudes for transferring an electron from the level
i to lead �. Note that the Hamiltonian depends solely on the
total Aharonov-Bohm flux � when the interlevel coupling b

vanishes. Also, the tunnelling matrix Â is assumed to be
independent of the wave vector k. This assumption consider-
ably simplifies the analysis while keeping the main physical
picture intact.

A number of routes can be envisioned for the experimen-
tal realization of the model of Eq. �1�. The two levels can
either be localized on the same site �a single dot� or in two
spatially separated locations �a double dot�. In both cases we
assume the presence of a sufficiently large external magnetic
field such that the spin degeneracy of the electrons is lifted.

In the double-dot scenario, the energy levels of each dot
can be controlled separately by using suitable gate voltages.
This enables the independent tuning of �0 and � �see, e.g.,
the double-dot charging diagrams in Ref. 31�. The terms pro-
portional to U and b describe, respectively, the capacitive
coupling and the tunnel coupling between the dots. If the
dots are made sufficiently small, both the intradot charging
energy and the mean level spacing within each dot can be
made much larger than the energy scales relevant to our
model, thus providing the most direct physical realization of
the Hamiltonian of Eq. �1�.

A single-dot realization of our two-level model is some-
what more restrictive, since one has less control of the indi-
vidual levels for a given spin orientation. The most promis-
ing candidates for the single-dot implementation of the
present model are likely carbon nanotube quantum dots,
whose spectra naturally contain pairs of nearly degenerate
orbital levels with opposite chirality. Such states can be
tuned to orbital degeneracy using a longitudinal magnetic
field,32 while spin degeneracy can be lifted with a perpen-
dicular magnetic field.33 Magnetic-field-driven orbital degen-
eracy is also possible in semiconductor quantum dots, as
discussed, e.g., in recent literature.24,25,29,34 Hence, the mag-
netic field can play the dual role in such devices of both a
spin filter and an orbital tuning parameter for the realization
of the Hamiltonian of Eq. �1�. The combined control of spin
and orbital degrees of freedom is generally far greater,
though, in nanotube quantum dots.

B. Mapping onto a generalized Anderson model

The analysis of the model defined in Sec. II A employs an
exact mapping of the Hamiltonian of Eq. �1� onto a general-
ized Anderson Hamiltonian, which pertains to a single-level
quantum dot, coupled to a spin-degenerate band of conduc-
tion electrons. We show in Appendix A that the model de-
picted in Fig. 1�a� is fully described by the Hamiltonian
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H = �
k,�
�kck�

† ck� + �
�
	�0 − �

h

2
cos 
n�

− �d↑
†d↓ + d↓

†d↑�
h

2
sin  + Un↑n↓ + �

k,�
V��ck�

† d� + H.c.� ,

�7�

schematically sketched Fig. 1�b�, which generalizes the
original Anderson model1 in two aspects. First, it allows for
spin-dependent coupling between the dot and the conduction
band. A similar variant of the Anderson model has recently
attracted much theoretical and experimental attention in con-
nection with the Kondo effect for ferromagnetic leads.17,35–38

Second, it allows for a Zeeman field whose direction is in-
clined with respect to the “anisotropy” axis z. For spin-
independent tunnelling, one can easily realign the field along
the z axis by a simple rotation of the different operators
about the y axis. This is no longer the case once V↑�V↓,
which precludes the use of some of the exact results avail-
able for the Anderson model. As we show below, the main
effect of spin-dependent tunnelling is to modify the effective
field seen by electrons on the dot, by renormalizing its z
component.

The derivation of Eq. �7� is accomplished by a transfor-
mation known as the singular-value decomposition,39 which

allows one to express the tunnelling matrix Â in the form

Â = Rl
† · �V↑ 0

0 V↓
� · Rd. �8�

Here Rl and Rd are unitary 2�2 matrices, which are used to
independently rotate the lead and the dot operators according
to

�d↑

d↓
� � Rd · �d1

d2
�, �ck↑

ck↓
� � Rl · �ckL

ckR
� . �9�

To make contact with the conventional Anderson impurity
model, we have labelled the linear combinations of the origi-
nal operators �defined through Eqs. �9�� by the “spin” index
�=↑ �+1� and �=↓ �−1�.

The transformation �9� generalizes the one in which the
same rotation R is applied to both the dot and the lead op-
erators. It is needed in the present, more general, case since

the matrix Â generically lacks an orthogonal basis of eigen-
vectors. The matrices Rd and Rl can always be chosen
uniquely �up to a common overall phase� such that40 �a� the
tunnelling between the dot and the continuum is diagonal in
the spin basis �so that the tunnelling conserves the spin�; �b�
the amplitudes V↑�V↓�0 are real; and �c� the part of the
Hamiltonian of Eq. �7� pertaining to the dot has only real
matrix elements with h sin �0. The explicit expressions for
the rotation matrices Rd and Rl as well as for the model
parameters appearing in Eq. �7� in terms of those of the
original Hamiltonian are given in Appendix A.

It should be emphasized that partial transformations in-
volving only one rotation matrix, either Rd or Rl, have pre-
viously been applied in this context �see, e.g., Refs. 6 and
24�. However, excluding special limits, both Rd and Rl are

required to expose the formal connection to the Anderson
model. In the following section we discuss in detail the low-
energy physics of the Hamiltonian of Eq. �7�, focusing on the
local-moment regime. Explicit results for the conductance
and the occupations of the levels are then presented in Secs.
IV and V.

III. THE LOCAL-MOMENT REGIME

There are two limits where the model of Eq. �1� has an
exact solution:6 �i� when the spin-down state is decoupled in
Eq. �7�, i.e., when V↓=h sin =0; �ii� when the coupling is
isotropic, i.e., V↑=V↓. In the former case, n↓ is conserved.
The Hilbert space separates then into two disconnected sec-
tors with n↓=0 and n↓=1. Within each sector, the Hamil-
tonian can be diagonalized independently as a single-particle
problem. In the latter case, one can always align the mag-
netic field h along the z axis by a simple rotation of the
different operators about the y axis. The model of Eq. �7�
reduces then to a conventional Anderson model in a mag-
netic field, for which an exact Bethe ansatz solution is
available.20. �This special case will be analyzed in great de-
tail in Sec. V A.�

In terms of the model parameters appearing in the original
Hamiltonian, the condition V↓=0 corresponds to

�aL1aR2� = �aR1aL2�, and � = � mod 2
 , �10�

whereas V↑=V↓=V corresponds to

�aL1� = �aR2�, �aL2� = �aR1�, and � = �
 + ��mod 2
 .

�11�

Here

� = �0 if aL1aL2aR1aR2	 0,


 if aL1aL2aR1aR2� 0,
�12�

records the combined signs of the four coefficients a�i.
41

Excluding the two cases mentioned above, no exact solu-
tions to the Hamiltonian of Eq. �1� are known. Nevertheless,
we shall argue below that the model displays generic low-
energy physics in the “local-moment” regime, corresponding
to the Kondo effect in a finite magnetic field. To this end we
focus hereafter on �↑ ,�↓ ,h�−�0 ,U+�0, and derive an ef-
fective low-energy Hamiltonian for general couplings. Here
��=
�V�

2 is half the tunnelling rate between the spin state �
and the leads.

A. Effective low-energy Hamiltonian

As is mentioned above, when V↑=V↓ one is left with a
conventional Kondo effect in the presence of a finite mag-
netic field. Asymmetry in the couplings, V↑�V↓, changes the
situation in three respects. First, the effective magnetic field
seen by electrons on the dot is modified, acquiring a renor-
malized z component. Second, the elimination of charge
fluctuations by means of a Schrieffer-Wolff transformation15

results in an anisotropic spin-exchange interaction. Third, a
new interaction term is produced, coupling the spin and the
charge. Similar aspects have been previously discussed in the
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context of the Kondo effect in the presence of ferromagnetic
leads,17 where the source of the asymmetry stems from the
inequivalent density of states for conduction electrons with
opposite spin.38 Some of these aspects were also discussed in
connection with the Zeeman-splitting induced Kondo
effect.29 Below we elaborate on the emergence of these fea-
tures in the present case.

Before turning to a detailed derivation of the effective
low-energy Hamiltonian, we briefly comment on the physical
origin of the modified magnetic field. As is well known, the
coupling to the continuum renormalizes the bare energy lev-
els of the dot. For �↑ ,�↓ ,h�−�0 ,U+�0, these renormaliza-
tions can be accurately estimated using second-order pertur-
bation theory in V�. For V↑�V↓, each of the bare levels ��
=�0− 1

2�h cos  is shifted by a different amount, which acts
in effect as an excess magnetic field. Explicitly, for T=0 and
D� ��0 � ,U one obtains13,17

�hz =
�↑ − �↓



ln
�0 + U

��0�
. �13�

As �0 is swept across −U /2, �hz��↑−�↓ changes sign. Had
��↑−�↓� exceeded h this would have dictated a sign reversal
of the z component of the combined field as �0 is tuned
across the Coulomb-blockade valley. As originally noted by
Silvestrov and Imry,13 this simple but insightful observation
underlies the population inversion discussed in Refs. 9, 10,
and 13 for a singly occupied dot. We shall return to this
important point in greater detail later on.

A systematic derivation of the effective low-energy
Hamiltonian for �↑ ,�↓ ,h�−�0 ,U+�0 involves the combi-
nation of Anderson’s poor-man’s scaling16 and the
Schrieffer-Wolff transformation.15 For ��0 � U+�0, the
elimination of high-energy excitations proceeds in three
steps. First Haldane’s perturbative scaling approach14 is ap-
plied to progressively reduce the bandwidth from its bare
value D down to DSW��0 � U+�0. Next a Schrieffer-Wolff
transformation is carried out to eliminate charge fluctuations
on the dot. At the conclusion of this second step one is left
with a generalized Kondo Hamiltonian �Eq. �16� below�, fea-
turing an anisotropic spin-exchange interaction and an addi-
tional interaction term that couples spin and charge. The
Kondo Hamiltonian also includes a finite magnetic field
whose direction is inclined with respect to the anisotropy
axis z. In the third and final stage, the Kondo Hamiltonian is
treated using Anderson’s poor-man’s scaling16 to expose its
low-energy physics.

The above procedure is further complicated in the case
where ��0� and U+�0 are well separated in energy. This situ-
ation requires two distinct Schrieffer-Wolff transformations:
one at DSW

up max���0 � ,U+�0� and the other at DSW
down

min���0 � ,U+�0�. Reduction of the bandwidth from DSW
up to

DSW
down is accomplished using yet another �third� segment of

the perturbative scaling. It turns out that all possible order-
ings of ��0� and U+�0 produce the same Kondo Hamiltonian,
provided that �↑, �↓, and h are sufficiently small as com-
pared to −�0 and U+�0. To keep the discussion as concise as
possible, we therefore restrict the presentation to the case
��0 � U+�0.

Consider first the energy window between D and DSW,
which is treated using Haldane’s perturbative scaling.14 Sup-
pose that the bandwidth has already been lowered from its
initial value D to some value D�=De−l with 0� l
� ln�D /DSW�. Further reducing the bandwidth to D��1−�l�
produces a renormalization of each of the energies �↑, �↓, and
U. Specifically, the z component of the magnetic field, hz
��↓−�↑, is found to obey the scaling equation

dhz

dl
=
�↑ − �↓



	 1

1 − el�0/D
−

1

1 + el�U + �0�/D
 . �14�

Here we have retained �0 and U+�0 in the denominators,
omitting corrections which are of higher order in �↑, �↓, and
h �these include also the small renormalizations of �� and U
that are accumulated in the course of the scaling�. The x
component of the field, hx=h sin , remains unchanged
throughout the procedure. Upon reaching D�=DSW, the
renormalized field hz becomes

hz
* = h cos  +

�↑ − �↓



ln

DSW + U + �0

DSW − �0
, �15�

where we have assumed D� ��0�, U.
Once the scale DSW is reached, charge fluctuations on the

dot are eliminated via a Schrieffer-Wolff transformation,15

which generates among other terms also further renormaliza-
tions of ��. Neglecting h in the course of the transformation,
one arrives at the following Kondo-type Hamiltonian,

HK = �
k,�
�kck�

† ck� + J��Sxsx + Sysy�

+ JzSzsz + vscS
z �
k,k�,�

:ck�
† ck��:

+ �
k,k�,�

�v+ + �v−�:ck�
† ck��:− h̃zSz − h̃xSx. �16�

Here we have represented the local moment on the dot by the
spin-1

2 operator

S� =
1

2 �
�,��

�����d�
†d�� �17�

��� being the Pauli matrices�, while

s� =
1

2 �
k,k�

�
�,��

�����ck�
† ck��� �18�

are the local conduction-electron spin densities. The symbol
:ck�

† ck�� : =ck�
† ck��−�k,k��−�k� stands for normal ordering

with respect to the filled Fermi sea. The various couplings
that appear in Eq. �16� are given by the explicit expressions

�J� =
2��↑�↓



	 1

��0�
+

1

U + �0

 , �19�

�Jz =
�↑ + �↓



	 1

��0�
+

1

U + �0

 , �20�
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�vsc =
�↑ − �↓

4

	 1

��0�
+

1

U + �0

 , �21�

�v± =
�↑ ± �↓

4

	 1

��0�
−

1

U + �0

 , �22�

h̃z = h cos  +
�↑ − �↓



ln

U + �0

��0�
, �23�

and

h̃x = h sin  . �24�

Equations �19�–�24� are correct to leading order in �↑, �↓,
and h, in accordance with the hierarchy �↑, �↓, h� ��0�, U
+�0. In fact, additional terms are generated in Eq. �16� when
h is kept in the course of the Schrieffer-Wolff transformation.
However, the neglected terms are smaller than the ones re-
tained by a factor of h /min���0 � ,U+�0��1, and are not ex-
pected to alter the low-energy physics in any significant way.

We also note that h̃z accurately reproduces the second-order
correction to hz detailed in Eq. �13�. As emphasized above,
the same effective Hamiltonian is obtained when ��0� and
U+�0 are well separated in energy, although the derivation is
notably more cumbersome. In unifying the different possible
orderings of ��0� and U+�0, the effective bandwidth in Eq.
�16� must be taken to be D0min���0 � ,U+�0�.

B. Reduction to the Kondo effect in a finite magnetic field

In addition to spin-exchange anisotropy and a tilted mag-
netic field, the Hamiltonian of Eq. �16� contains a new inter-
action term, vsc, which couples spin and charge. It also in-
cludes spin-dependent potential scattering, represented by
the term v− above. As is well known, spin-exchange aniso-
tropy is irrelevant for the conventional spin-1

2 single-channel
Kondo problem. As long as one lies within the confines of
the antiferromagnetic domain, the system flows to the same
strong-coupling fixed point no matter how large the ex-
change anisotropy is. SU�2� spin symmetry is thus restored
at low energies. A finite magnetic field h cuts off the flow to
isotropic couplings, as does the temperature T. However, the
residual anisotropy is negligibly small if h, T and the bare
couplings are small. That is, low-temperature thermody-
namic and dynamic quantities follow a single generic depen-
dence on T /TK and h /Tk, where TK is the Kondo tempera-
ture. All relevant information on the bare spin-exchange
anisotropy is contained for weak couplings in the micro-
scopic form of TK.

The above picture is insensitive to the presence of weak
potential scattering, which only slightly modifies the
conduction-electron phase shift at the Fermi energy. As we
show below, neither is it sensitive to the presence of the
weak couplings vsc and v− in Eq. �16�. This observation is
central to our discussion, as it enables a very accurate and
complete description of the low-energy physics of HK in
terms of the conventional Kondo model in a finite magnetic
field. Given the Kondo temperature TK and the direction and
magnitude of the renormalized field pertaining to Eq. �16�,

physical observables can be extracted from the exact Bethe
ansatz solution of the conventional Kondo model. In this
manner, one can accurately compute the conductance and the
occupation of the levels, as demonstrated in Secs. IV and V.

To establish this important point, we apply poor-man’s
scaling16 to the Hamiltonian of Eq. �16�. Of the different

couplings that appear in HK, only Jz, J�, and h̃z are renor-
malized at second order. Converting to the dimensionless

exchange couplings J̃z=�Jz and J̃�=�J�, these are found17,29

to obey the standard scaling equations16,18

dJ̃z

dl
= J̃�

2 , �25�

dJ̃�

dl
= J̃zJ̃�, �26�

independent of vsc and v±. Indeed, the couplings vsc and v±
do not affect the scaling trajectories in any way, other than

through a small renormalization to h̃z:

dh̃z

dl
= D0e−l�J̃zṽ− + 2ṽscṽ+�8 ln 2. �27�

Here ṽ� are the dimensionless couplings �v� ��=sc, ± �, and
l equals ln�D0 /D�� with D� the running bandwidth.

As stated above, the scaling equations �25� and �26� are
identical to those obtained for the conventional anisotropic
Kondo model. Hence, the Kondo couplings flow toward
strong coupling along the same scaling trajectories and with
the same Kondo temperature as in the absence of vsc and v±.
Straightforward integration of Eqs. �25� and �26� yields

TK = D0 exp	−
1

��
tanh−1 �

Jz

 �28�

with �=�Jz
2−J�

2 . Here we have exploited the hierarchy Jz
�J�	0 in deriving Eq. �28�. In terms of the original model
parameters appearing in Eq. �7�, Eq. �28� takes the form

TK = D0 exp� 
�0�U + �0�
2U��↑ − �↓�

ln
�↑
�↓
� . �29�

Equation �29� was obtained within second-order scaling,
which is known to overestimate the preexponential factor
that enters TK. We shall not seek an improved expression for
TK encompassing all parameter regimes of Eq. �7�. More
accurate expressions will be given for the particular cases of
interest, see Sec. V below. Much of our discussion will not
depend, though, on the precise form of TK. We shall only
assume it to be sufficiently small such that the renormalized
exchange couplings can be regarded isotropic starting at en-
ergies well above TK.

The other competing scale which enters the low-energy

physics is the fully renormalized magnetic field, h� tot=htot
x x̂

+htot
z ẑ. While the transverse field htot

x remains given by
h sin , the longitudinal field htot

z is obtained by integration of
Eq. �27�, subject to the initial condition of Eq. �23�. Since the

running coupling J̃z is a slowly varying function of l in the
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range where Eqs. �25�–�27� apply, it can be replaced for all
practical purposes by its bare value in Eq. �27�. Straightfor-
ward integration of Eq. �27� then yields

htot
z = h cos  +

�↑ − �↓



ln

U + �0

��0�

+ 3 ln�2�D0
�↑

2 − �↓
2


2 ·
U�U + 2�0�
�U + �0�2�0

2 , �30�

where we have used Eqs. �20�–�22� for Jz, vsc, and v±. Note
that the third term on the right-hand side of Eq. �30� is gen-
erally much smaller than the first two terms, and can typi-
cally be neglected.

To conclude this section, we have shown that the Hamil-
tonian of Eq. �7�, and thus that of Eq. �1�, is equivalent at
sufficiently low temperature and fields to the ordinary isotro-
pic Kondo model with a tilted magnetic field, provided that
�↑, �↓� ��0�, U+�0. The relevant Kondo temperature is ap-
proximately given by Eq. �29�, while the components of

h� tot=htot
x x̂+htot

z ẑ are given by htot
x =h sin  and Eq. �30�.

IV. PHYSICAL OBSERVABLES

Having established the intimate connection between the
generalized Anderson Hamiltonian, Eq. �7�, and the standard
Kondo model with a tilted magnetic field, we now employ
well-known results of the latter model in order to obtain a
unified picture for the conductance and the occupation of the
levels of our original model, Eq. �1�. The analysis extends
over a rather broad range of parameters. For example, when
U+2�0=0, then the sole requirement for the applicability of
our results is for ��2+b2 to be small. The tunnelling matrix

Â can be practically arbitrary as long as the system lies deep
in the local-moment regime. The further one departs from the
middle of the Coulomb-blockade valley the more restrictive

the condition on Â becomes in order for h� tot to stay small.
Still, our approach is applicable over a surprisingly broad
range of parameters, as demonstrated below. Unless stated
otherwise, our discussion is restricted to zero temperature.

A. Conductance

At zero temperature, a local Fermi liquid is formed in the
Kondo model. Only elastic scattering takes place at the
Fermi energy, characterized by the scattering phase shifts for
the two appropriate conduction-electron modes. For a finite
magnetic field h in the z direction, single-particle scattering
is diagonal in the spin index. The corresponding phase shifts,
�↑�h� and �↓�h�, are given by the Friedel-Langreth sum
rule,21,42 ���h�=
�n��, which when applied to the local-
moment regime takes the form

���h� =



2
+ �
M�h� . �31�

Here M�h� is the spin magnetization, which reduces43 in the
scaling regime to a universal function of h /TK,

M�h� = MK�h/TK� . �32�

Thus, Eq. �31� becomes ���h�=
 /2+�
MK�h /TK�, where
MK�h /TK� is given by Eq. �B1�.

To apply these results to the problem at hand, one first
needs to realign the tilted field along the z axis. This is
achieved by a simple rotation of the different operators about

the y axis. Writing the field h� tot in the polar form

h� tot � htot�sin h x̂ + cos h ẑ�

� h sin  x̂ + 	h cos  +
�↑ − �↓



ln

U + �0

��0� 
ẑ , �33�

the lead and the dot operators are rotated according to

�c̃k↑

c̃k↓
� = Rh · �ck↑

ck↓
� = RhRl · �ckL

ckR
� �34�

and

�d̃↑

d̃↓
� = Rh · �d↑

d↓
� = RhRd · �d1

d2
� , �35�

with

Rh = ei�h/2��y = � cos�h/2� sin�h/2�
− sin�h/2� cos�h/2� � . �36�

Here Rl and Rd are the unitary matrices used in Eq. �9� to
independently rotate the lead and the dot operators. Note that
since sin �0, the range of h is h� �0;
�.

The new dot and lead degrees of freedom have their spins

aligned either parallel �d̃↑ and c̃k↑� or antiparallel �d̃↓ and c̃k↓�
to the field h� tot. In this basis the single-particle scattering
matrix is diagonal,

S̃ = − �ei2
MK�htot/TK� 0

0 e−i2
MK�htot/TK� � . �37�

The conversion back to the original basis set of left- and
right-lead electrons is straightforward,

S = Rl
†Rh

†S̃RhRl � �r t�

t r�
� , �38�

providing us with the zero-temperature conductance G
= �e2 /2
� � � t�2.

Equations �37� and �38� were derived employing the map-
ping of Eq. �1� onto an effective isotropic Kondo model with
a tilted magnetic field, in the vsc, v±→0 limit. Within this
framework, Eqs. �37� and �38� are exact in the scaling re-
gime, TK /D0�1. The extent to which these equations are
indeed valid can be appreciated by considering the special
case h sin =0, for which there exists an exact �and indepen-
dent� solution for the scattering matrix S in terms of the dot
“magnetization” M = �n↑−n↓� /2 �see Eq. �41� below�. That
solution, which is based on the Friedel-Langreth sum rule21

applied directly to a spin-conserving Anderson model, repro-
duces Eqs. �37� and �38� in the Kondo regime.
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1. Zero Aharonov-Bohm fluxes

Of particular interest is the case where no Aharonov-
Bohm fluxes are present, where further analytic progress can
be made. For �L=�R=0, the parameters that appear in the
Hamiltonian of Eq. �1� are all real. Consequently, the rotation
matrices Rd and Rl acquire the simplified forms given by
Eqs. �A29� and �A32� �see Appendix A for details�. Under
these circumstances, the matrix product RhRl becomes
±ei�y�h+sRl�/2ei
�z�1−sR�/4, and the elements of the scattering
matrix �see Eq. �38�� are

t = t� = − i sin�2
MK�htot/TK��sin�l + sRh� ,

r = �r��* = − cos�2
MK�htot/TK��

− i sin�2
MK�htot/TK��cos�l + sRh� . �39�

Hence, the conductance is

G =
e2

2
�
sin2�2
MK�htot/TK�� sin2�l + sRh� , �40�

where the sign sR and angle l are given by Eqs. �A31� and
�A23�, respectively. All dependencies of the conductance on
the original model parameters that enter Eq. �1� are com-
bined in Eq. �40� into two variables alone, l+sRh and the
reduced field htot /TK. In particular, l is determined exclu-

sively by the tunnelling matrix Â, while sR depends addition-
ally on the two dot parameters � and b.

The conditions for a phase lapse to occur are particularly
transparent from Eq. �40�. These lapses correspond to zeroes
of t, and, in turn, of the conductance. There are two possi-
bilities for G to vanish: either htot is zero, or l+sRh equals
an integer multiple of 
. For example, when the Hamiltonian
of Eq. �7� is invariant under the particle-hole transformation
d�→d�

† and ck�→−ck�
† �which happens to be the case when-

ever ��2+b2=0 and U+2�0=0�, then htot vanishes, and con-
sequently the conductance vanishes as well. A detailed dis-
cussion of the ramifications of Eq. �40� is held in Sec. V B
below.

2. Parallel-field configuration

For h sin =0, spin is conserved by the Hamiltonian of
Eq. �7�. We refer to this case as the “parallel-field” configu-
ration, since the magnetic field is aligned with the anisotropy
axis z. For a parallel field, one can easily generalize the
Friedel-Langreth sum rule21 to the Hamiltonian of Eq. �7�.35

Apart from the need to consider each spin orientation sepa-
rately, details of the derivation are identical to those for the
ordinary Anderson model,21 and so is the formal result for
the T=0 scattering phase shift: ��=
�N�, where �N� is the
number of displaced electrons in the spin channel �. In the
wide-band limit, adopted throughout our discussion, �N� re-
duces to the occupancy of the corresponding dot level, �n��.
The exact single-particle scattering matrix then becomes

S = ei
�n↑+n↓�Rl
† · �ei2
M 0

0 e−i2
M � · Rl, �41�

where M = �n↑−n↓� /2 is the dot “magnetization.”

Equation �41� is quite general. It covers all physical re-
gimes of the dot, whether empty, singly occupied or doubly
occupied, and extends to arbitrary fluxes �L and �R. Al-
though formally exact, it does not specify how the dot “mag-
netization” M and the total dot occupancy �n↑+n↓� relate to
the microscopic model parameters that appear in Eq. �7�.
Such information requires an explicit solution for these
quantities. In the Kondo regime considered above, �n↑+n↓� is
reduced to one and M is replaced by ±MK�htot /TK�. Here the

sign depends on whether the field h� tot is parallel or antipar-
allel to the z axis �recall that htot�0 by definition�. As a
result, Eq. �41� reproduces Eqs. �37� and �38�.

To carry out the rotation in Eq. �41�, we rewrite it in the
form

S = ei
�n↑+n↓�Rl
†�cos�2
M� + i sin�2
M��z�Rl. �42�

Using the general form of Eq. �A3� for the rotation matrix Rl,
the single-particle scattering matrix is written as S

=ei
�n↑+n↓�S̄, where

S̄ = cos�2
M� + i sin�2
M�cos l�z

+ i sin�2
M�sin l �cos �l�x + sin �l�y� . �43�

The zero-temperature conductance, G= �e2 /2
� � � t�2, takes
then the exact form

G =
e2

2
�
sin2�2
M�sin2l. �44�

Two distinct properties of the conductance are apparent
form Eq. �44�. First, G is bounded by sin2 l times the con-
ductance quantum unit e2 /2
�. Unless l happens to equal
±
 /2, the maximal conductance is smaller than e2 /2
�.
Secondly, G vanishes for M =0 and is maximal for M
= ±1/4. Consequently, when M is tuned from M �−1/2 to
M �1/2 by varying an appropriate control parameter �for
example, �0 when �↑��↓�, then G is peaked at the points
where M = ±1/4. In the Kondo regime, when M
→ ±MK�htot /TK�, this condition is satisfied for htot�2.4TK.
As we show in Sec. V B, this is the physical origin of the
correlation-induced peaks reported by Meden and

Marquardt.11 Note that for a given tunnelling matrix Â in the
parallel-field configuration, the condition for a phase lapse to
occur is simply for M to vanish.

B. Occupation of the dot levels

Similar to the zero-temperature conductance, one can ex-
ploit exact results of the standard Kondo model to obtain the
occupation of the levels at low temperatures and fields. De-
fining the two reduced density matrices

Od = ��d1
†d1� �d2

†d1�
�d1

†d2� �d2
†d2�

� �45�

and
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Õd = ��d̃↑
†d̃↑� �d̃↓

†d̃↑�

�d̃↑
†d̃↓� �d̃↓

†d̃↓�
� , �46�

these are related through

Od = Rd
†Rh

†ÕdRhRd. �47�

Here RhRd is the overall rotation matrix pertaining to the dot
degrees of freedom, see Eq. �35�.

At low temperatures, the mapping onto an isotropic
Kondo model implies

Õd = ��ñ↑� 0

0 �ñ↓�
� , �48�

where

�ñ�� = ntot/2 + �M̃ . �49�

Here we have formally separated the occupancies �ñ�� into
the sum of a spin component and a charge component. The

spin component involves the magnetization M̃ along the di-

rection of the total effective field h� tot. The latter is well de-
scribed for T=0 by the universal magnetization curve
MK�htot /TK� of the Kondo model �see Eq. �B1��. As for the
total dot occupancy ntot, deep in the local-moment regime
charge fluctuations are mostly quenched at low temperatures,
resulting in the near integer valance ntot�1. One can slightly
improve on this estimate of ntot by resorting to first-order
perturbation theory in �� �and zeroth order in h�,

ntot � 1 +
�↑ + �↓

2

	 1

�0
+

1

U + �0

 = 1 − 2�v+. �50�

This low-order process does not enter the Kondo effect, and
is not contained in MK�htot /TK�.44 With the above approxi-
mations, the combination of Eqs. �47� and �48� yields a gen-
eral formula for the reduced density matrix

Od = ntot/2 + MK�htot/TK�Rd
†Rh

†�zRhRd. �51�

1. Zero Aharonov-Bohm fluxes

As in the case of the conductance, Eq. �51� considerably
simplifies in the absence of Aharonov-Bohm fluxes,
when the combined rotation RhRd equals
�sRs�1/2ei�y�h+sd�/2ei
�z�1−s�/4 �see Eqs. �36� and �A29��.
Explicitly, Eq. �51� becomes

Od = ntot/2 + MK�htot/TK�cos�d + sh��z

+ MK�htot/TK�sin�d + sh��x, �52�

where the sign s and angle d are given by Eqs. �A30� and
�A23�, respectively.

Several observations are apparent from Eq. �52�. First,
when written in the original “spin” basis d1

† and d2
†, the re-

duced density matrix Od contains the off-diagonal matrix el-
ement MK�htot /TK�sin�d+sh�. The latter reflects the fact
that the original “spin” states are inclined with respect to the
anisotropy axis dynamically selected by the system. Second,
similar to the conductance of Eq. �40�, Od depends on two

variables alone: d+sh and the reduced field htot /TK. Here,
again, the angle d depends solely on the tunnelling matrix

Â, while the sign s depends additionally on � and b. Third,
the original levels d1

† and d2
† have the occupation numbers

�n1� = ntot/2 + MK�htot/TK�cos�d + sh� , �53a�

�n2� = ntot/2 − MK�htot/TK�cos�d + sh� . �53b�

In particular, equal populations �n1�= �n2� are found if either
htot is zero or if d+sd equals 
 /2 up to an integer multiple
of 
. This provides one with a clear criterion for the occur-
rence of a population inversion,9,10,13 i.e., the crossover from
�n1�	 �n2� to �n2�	 �n1� or vice versa.

2. Parallel-field configuration

In the parallel-field configuration, the angle h is either

zero or 
, depending on whether the magnetic field h� tot is
parallel or antiparallel to the z axis �recall that h sin 
=htot sin h=0 in this case�. The occupancies �n1� and �n2�
acquire the exact representation

�n1� = ntot/2 + M cos d, �54a�

�n2� = ntot/2 − M cos d, �54b�

where ntot is the exact total occupancy of the dot and M
= �n↑−n↓� /2 is the dot “magnetization,” defined and used

previously �not to be confused with M̃ = ±M�. As with the
conductance, Eqs. �54� encompass all regimes of the dot, and
extend to arbitrary Aharonov-Bohm fluxes. They properly
reduce to Eqs. �53� in the Kondo regime, when ntot�1 �see
Eq. �50�� and M→ ±MK�htot /TK�. �Note that Eqs. �53� have
been derived for zero Aharonov-Bohm fluxes.�

One particularly revealing observation that follows from
Eqs. �54� concerns the connection between the phenomena of
population inversion and phase lapses in the parallel-field

configuration. For a given tunnelling matrix Â in the parallel-
field configuration, the condition for a population inversion
to occur is identical to the condition for a phase lapse to
occur. Both require that M =0. Thus, these seemingly unre-
lated phenomena are synonymous in the parallel-field con-
figuration. This is not generically the case when htot

x �0, as
can be seen, for example, from Eqs. �40� and �53�. In the
absence of Aharonov-Bohm fluxes, the conductance is pro-
portional to sin2�l+sRh�. It therefore vanishes for htot

x �0 if
and only if l+sRh=0 mod 
. By contrast, the difference in
populations �n1−n2� involves the unrelated factor cos�d

+sh�, which generally does not vanish together with
sin�l+sRh�.

Another useful result which applies to the parallel-field
configuration is an exact expression for the T=0 conductance
in terms of the population difference �n1−n2�. It follows
from Eqs. �54� that M = �n1−n2� / �2 cos d�. Inserting this re-
lation into Eq. �44� yields
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G =
e2

2
�
sin2	
�n1 − n2�

cos d

sin2l. �55�

This expression will be used in Sec. V for analyzing the
conductance in the presence of isotropic couplings, and for
the cases considered by Meden and Marquardt.11

V. RESULTS

Up until this point we have developed a general frame-
work for describing the local-moment regime in terms of two
competing energy scales, the Kondo temperature TK and the
renormalized magnetic field htot. We now turn to explicit
calculations that exemplify these ideas. To this end, we begin
in Sec. V A with the exactly solvable case V↑=V↓, which
corresponds to the conventional Anderson model in a finite
magnetic field.6 Using the exact Bethe ansatz solution of the
Anderson model,20 we present a detailed analysis of this spe-
cial case with three objectives in mind: �i� to benchmark our
general treatment against rigorous results; �ii� to follow in
great detail the delicate interplay between the two competing
energy scales that govern the low-energy physics; �iii� to set
the stage for the complete explanation of the charge
oscillations9,10,13 and the correlation-induced resonances in
the conductance of this device.11,12

We then proceed in Sec. V B to the generic anisotropic
case V↑�V↓. Here a coherent explanation is provided for the
ubiquitous phase lapses,8 population inversion,9,10 and
correlation-induced resonances11,12 that were reported re-
cently in various studies of two-level quantum dots. In par-
ticular, we expose the latter resonances as a disguised Kondo
phenomenon. The general formulas of Sec. IV are quantita-
tively compared to the numerical results of Ref. 11. The
detailed agreement that is obtained nicely illustrates the
power of the analytical approach put forward in this paper.

A. Exact treatment of V_=V`

As emphasized in Sec. III, all tunnelling matrices Â which
satisfy Eq. �11� give rise to equal amplitudes V↑=V↓=V
within the Anderson Hamiltonian description of Eq. �7�.
Given this extra symmetry, one can always choose the uni-
tary matrices Rl and Rd in such a way that the magnetic field
h points along the z direction �namely, cos =1 in Eq. �7��.
Perhaps the simplest member in this class of tunnelling ma-
trices is the case where aL1=−aL2=aR1=aR2=V /�2, �L=�R
=0, and b=0. One can simply convert the conduction-
electron operators to even and odd combinations of the two
leads, corresponding to choosing l=
 /2+d. Depending on
the sign of �, the angle d is either zero �for ��0� or 
 �for
�	0�, which leaves us with a conventional Anderson impu-

rity in the presence of the magnetic field h� = �� � ẑ. All other
rotation angle that appear in Eqs. �A2� and �A2� �i.e., �’s and
�’s� are equal to zero. For concreteness we shall focus here-
after on this particular case, which represents, up to a simple

rotation of the d�
† and ck�

† operators, all tunnelling matrices Â
in this category of interest. Our discussion is restricted to
zero temperature.

1. Impurity magnetization

We have solved the exact Bethe anstaz equations numeri-
cally using the procedure outlined in Appendix B. Our re-
sults for the occupation numbers �n�� and the magnetization
M = �n↑−n↓� /2 are summarized in Figs. 2 and 3. Figure 2
shows the magnetization of the Anderson impurity as a func-
tion of the �average� level position �0 in a constant magnetic
field, h=�=10−3U. The complementary regime �0�−U /2 is
obtained by a simple reflection about �0=−U /2, as follows
from the particle-hole transformation d�→d−�

† and ck�→
−ck−�

† . The Bethe ansatz curve accurately crosses over from
the perturbative domain at large �0�� �when the dot is al-
most empty� to the local-moment regime with a fully pro-
nounced Kondo effect �when the dot is singly occupied�. In
the latter regime, we find excellent agreement with the ana-
lytical magnetization curve of the Kondo model, Eq. �B1�,
both as a function of �0 and as a function of the magnetic
field � �lower left-hand inset to Fig. 2�. The agreement with
the universal Kondo curve is in fact quite surprising in that it
extends nearly into the mixed-valent regime. As a function of
field, the Kondo curve of Eq. �B1� applies up to fields of the
order of h��U�TK.

2. Occupation numbers and charge oscillations

Figure 3 displays the individual occupation numbers �n1�
and �n2� as a function of �0, for a series of constant fields
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FIG. 2. �Color online� Magnetization of the isotropic case as a
function of �0: exact Bethe ansatz curve and comparison with dif-
ferent approximation schemes. Black symbols show the magnetiza-
tion M derived from the exact Bethe ansatz equations; the dashed
�red� line marks the result of first-order perturbation theory in �
�Ref. 9, divergent at �0=0�; the thick �blue� line is the analytical
formula for the magnetization in the Kondo limit, Eq. �B1�, with TK

given by Eq. �B4�. The model parameters are � /U=0.05, � /U
=10−3 and T=0. The upper right-hand inset shows the same data
but on a linear scale. The lower left-hand inset shows the magneti-
zation M as a function of the magnetic field h=� at fixed �0 /U=
−0.2. The universal magnetization curve of the Kondo model well
describes the exact magnetization up to M �0.42 �lower fields not
shown�, while first-order perturbation theory in � fails from M
�0.46 downwards.
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h=�. In going from large �0�� to large −��0+U���, the
total charge of the quantum dot increases monotonically
from nearly zero to nearly two. However, the partial occu-
pancies �n1� and �n2� display nonmonotonicities, which have
drawn considerable theoretical attention lately.9,10,13 As seen
in Fig. 3, the nonmonotonicities can be quite large, although
no population inversion occurs for �↑=�↓.

Our general discussion in Sec. III makes it easy to inter-
pret these features of the partial occupancies �ni�. Indeed, as
illustrated in Fig. 3, there is excellent agreement in the local-
moment regime between the exact Bethe ansatz results and
the curves obtained from Eqs. �53� and �50� based on the
mapping onto the Kondo Hamiltonian. We therefore utilize
Eqs. �53� for analyzing the data. To begin with we note that,
for �↑=�↓, there is no renormalization of the effective mag-
netic field. The latter remains constant and equal to h=�
independent of �0. Combined with the fact that cos�d

+sh��−1 in Eqs. �53�, the magnetization M = �n↑−n↓� /2
= �n2−n1� /2 depends exclusively on the ratio � /TK. The sole
dependence on �0 enters through TK, which varies according
to Eq. �B4�. Thus, M is positive for all gate voltages �0,
excluding the possibility of a population inversion.

The nonmonotonicities in the individual occupancies stem
from the explicit dependence of TK on the gate voltage �0.
According to Eq. �B4�, TK is minimal in the middle of the
Coulomb-blockade valley, increasing monotonically as a
function of ��0+U /2�. Thus, � /TK, and consequently M, is
maximal for �0=−U /2, decreasing monotonically the farther

�0 departs from −U /2. Since ntot�1 is nearly a constant in
the local-moment regime, this implies the following evolu-
tion of the partial occupancies: �n1� decreases ��n2� in-
creases� as �0 is lowered from roughly zero to −U /2. It then
increases �decreases� as �0 is further lowered toward −U.
Combined with the crossovers to the empty-impurity and
doubly occupied regimes, this generates a local maximum
�minimum� in �n1� ��n2�� near �00 ��0−U�.

Note that the local extremum in �ni� is most pronounced
for intermediate values of the field �. This can be understood
by examining the two most relevant energy scales in the
problem, namely, the minimal Kondo temperature TK

min

=TK��0=−U/2 and the hybridization width �. These two ener-
gies govern the spin susceptibility of the impurity in the
middle of the Coulomb-blockade valley �when �0=−U /2�
and in the mixed-valent regime �when either �0�0 or �0�
−U�, respectively. The charging curves of Fig. 3 stem from
an interplay of the three energy scales �, TK

min and � as
described below.

When ��TK
min, exemplified by the pair of curves corre-

sponding to the smallest field �=10−5U�0.24TK
min in Fig. 3,

the magnetic field remains small throughout the Coulomb-
blockade valley and no significant magnetization develops.
The two levels are roughly equally populated, showing a
plateaux at �n1���n2��1/2 in the regime where the dot is
singly occupied. As � grows and approaches TK

min, the field
becomes sufficiently strong to significantly polarize the im-
purity in the vicinity of �0=−U /2. A gap then rapidly devel-
ops between �n1� and �n2� near �0=−U /2 as � is increased.
Once � reaches the regime TK

min����, a crossover from
h�TK �fully polarized impurity� to h�TK �unpolarized im-
purity� occurs as �0 is tuned away from the middle of the
Coulomb-blockade valley. This leads to the development of a
pronounced maximum �minimum� in �n1� ��n2��, as marked
by the arrows in Fig. 3. Finally, when h��, the field is
sufficiently large to keep the dot polarized throughout the
local-moment regime. The extremum in �ni� degenerates into
a small bump in the vicinity of either �0�0 or �0�−U,
which is the nonmonotonic feature first discussed in Ref. 9.
This regime is exemplified by the pair of curves correspond-
ing to the largest field �=0.1U=2� in Fig. 3, whose param-
eters match those used in Fig. 2 of Ref. 9. Note, however,
that the perturbative calculations of Ref. 9 will inevitably
miss the regime TK

min���� where this feature is large.45

3. Conductance

The data of Fig. 3 can easily be converted to conductance
curves by using the exact formula of Eq. �55� with l
=3
 /2 and d=
. The outcome is presented in Fig. 4. The
evolution of G��0� with increasing � is quite dramatic. When
� is small, the conductance is likewise small with a shallow
peak at �0=−U /2. This peak steadily grows with increasing
� until reaching the unitary limit, at which point it is split in
two. Upon further increasing �, the two split peaks gradually
depart, approaching the peak positions �0�0 and �0�−U for
large �. The conductance at each of the two maxima remains
pinned at all stages at the unitary limit.
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FIG. 3. �Color online� The occupation numbers �n1� �solid
�blue� lines� and �n2� �dotted �red� lines� versus �0, as obtained from
the solution of the exact Bethe ansatz equations. In going from the
innermost to the outermost pairs of curves, the magnetic field h
=� increases by a factor of 10 between each successive pair of
curves, with the innermost �outermost� curves corresponding to
� /U=10−5 �� /U=0.1�. The remaining model parameters are � /U
=0.05 and T=0. Nonmonotonicities are seen in the process of
charging. These are most pronounced for intermediate values of the
field. The evolution of the nonmonotonicities with increasing field
is tracked by arrows. The dashed black lines show the approximate
values calculated from Eqs. �53� and �50� based on the mapping
onto the Kondo Hamiltonian �here h=0 and d=
�.
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These features of the conductance can be naturally under-
stood based on Eqs. �55� and �53�. When ��TK

min, the mag-
netization M �� / �2
TK� and the conductance G
��� /TK�2e2 / �2
� � are uniformly small, with a peak at �0

=−U /2 where TK is the smallest. The conductance mono-
tonically grows with increasing � until reaching the critical
field �=hc�2.4TK

min, where M��0=−U/2=1/4 and G��0=−U/2

=e2 / �2
� �. Upon further increasing �, the magnetization at
�0=−U /2 exceeds 1/4, and the associated conductance de-
creases. The unitarity condition M =1/4 is satisfied at two
gate voltages �max

± symmetric about −U /2, defined by the
relation TK�� /2.4. From Eq. �B4� one obtains

�max
± = −

U

2
±�U2

4
− �2 +

2�U



ln	 
�

2.4�2�U

 . �56�

The width of the two conductance peaks, ��, can be esti-
mated for TK

min���� from the inverse of the derivative
d�� /TK� /d�0, evaluated at �0=�max

± . It yields

��
�U


��max
± + U/2�

. �57�

Finally, when �	�, the magnetization exceeds 1/4 through-
out the local-moment regime. The resonance condition M
=1/4 is met only as charge fluctuations become strong,
namely, for either �0�0 or �0�−U. The resonance width ��
evolves continuously in this limit to the standard result for
the Coulomb-blockade resonances, ���.

Up until now the energy difference � was kept constant
while tuning the average level position �0. This protocol,
which precludes population inversion as a function of the

control parameter, best suits a single-dot realization of our
model, where both levels can be uniformly tuned using a
single gate voltage. In the alternative realization of two spa-
tially separated quantum dots, each controlled by its own
separate gate voltage, one could fix the energy level �1=�0
+� /2 and sweep the other level, �2=�0−� /2. This setup
amounts to changing the field h externally, and is thus well
suited for probing the magnetic response of our effective
impurity.

An example for such a protocol is presented in Fig. 5,
where �1 is held fixed at �1=−U /2. As �2 is swept through
�1, a population inversion takes place, leading to a narrow
dip in the conductance. The width of the conductance dip is
exponentially small due to Kondo correlations. Indeed, one
can estimate the dip width, ��dip, from the condition ��1
−�2 � =TK��2=�1

, which yields

��dip  �U� exp	−

U

8�

 . �58�

B. Anisotropic couplings, �_Å�`

As demonstrated at length in Sec. V A, the occurrence of
population inversion and a transmission zero for �↑=�↓ re-
quires an external modulation of the effective magnetic field.
Any practical device will inevitably involve, though, some
tunnelling anisotropy, V↑�V↓. The latter provides a different
route for changing the effective magnetic field, through the
anisotropy-induced terms in Eq. �30�. Implementing the
same protocol as in Sec. V A 2 �that is, uniformly sweeping
the average level position �0 while keeping the difference �
constant� would now generically result both in population
inversion and a transmission zero due to the rapid change in
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FIG. 4. �Color online� The exact conductance G �in units of
e2 / �2
� �� versus �0, as obtained from the Bethe ansatz magnetiza-
tion M and Eq. �55� with l=3
 /2 and d=
. Here � /U equals
10−5 �full �black� line�, 10−4 �dotted �red� line�, 10−3 �dashed
�green� line� and 0.1 �dotted-dashed �blue� line�. The remaining
model parameters are � /U=0.05 and T=0. Once � exceeds the
critical field hc�2.4TK

min, the single peak at �0=−U /2 is split into
two correlation-induced peaks, which cross over to Coulomb-
blockade peaks at large �.
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FIG. 5. �Color online� The exact occupation numbers �ni� and
conductance G �in units of e2 / �2
� �� as a function of �2, for T
=0, � /U=0.2 and fixed �1 /U=−1/2. The population inversion at
�2=�1 leads to a sharp transmission zero �phase lapse�. Note the
general resemblance between the functional dependence of G on �2

and the correlation-induced resonances reported by Meden and
Marquardt11 for �↑��↓ �see Fig. 6�.
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direction of the total field h� tot. As emphasized in Sec. IV B 2,
the two phenomena will generally occur at different gate
voltages when V↑�V↓.

1. Degenerate levels, �=b=0

We begin our discussion with the case where �=b=0,
which was extensively studied in Ref. 11. It corresponds to a
particular limit of the parallel-field configuration where h
=0. In the parallel-field configuration, the conductance G and
occupancies �ni� take the exact forms specified in Eqs. �44�
and �54�, respectively. These expressions reduce in the
Kondo regime to Eqs. �40� and �53�, with h either equal to
zero or 
, depending on the sign of htot

z .
Figure 6 shows the occupation numbers and the conduc-

tance obtained from Eqs. �40� and �53�, for �=b=0 and the
particular tunnelling matrix used in Fig. 2 of Ref. 11,

Â = A0��0.27 �0.16

�0.33 − �0.24
� . �59�

Here A0 equals ��tot / �
��, with �tot=�↑+�↓ being the com-
bined hybridization width. The Coulomb repulsion U is set
equal to 6�tot, matching the value used in the lower left-hand
panel of Fig. 2 in Ref. 11. For comparison, the corresponding
functional renormalization-group �fRG� data of Ref. 11 is
shown in the inset, after correcting for the renormalization of
the two-particle vertex.12,46 The accuracy of the fRG has
been established11,12 up to moderate values of U /�tot10
through a comparison with Wilson’s numerical

renormalization-group method.47 Including the renormaliza-
tion of the two-particle vertex further improves the fRG data
as compared to that of Ref. 11, as reflected, e.g., in the im-
proved positions of the outer pair of conductance resonances.

The agreement between our analytical approach and the
fRG is evidently very good in the local-moment regime, de-
spite the rather moderate value of U /�tot used. Noticeable
deviations develop in �ni� only as the mixed-valent regime is
approached �for �0�−�tot or �0+U��tot�, where our ap-
proximations naturally break down. In particular, our ap-
proach accurately describes the phase lapse at �0=−U /2, the
inversion of population at the same gate voltage, the location
and height of the correlation-induced resonances, and even
the location and height of the outer pair of conductance reso-
nances. Most importantly, our approach provides a coherent
analytical picture for the physics underlying these various
features, as elaborated below.

Before proceeding to elucidate the underlying physics, we
briefly quote the relevant parameters that appear in the con-
version to the generalized Anderson model of Eq. �7�. Using
the prescriptions detailed in Appendix A, the hybridization
widths ��=
�V�

2 come out to be

�↑/�tot = 0.624 15, �↓/�tot = 0.365 85, �60�

while the angles of rotation equal

l = 2.1698, d = − 0.634 34. �61�

Here l and d are quoted in radians. Using the exact con-
ductance formula of Eq. �44�, G is predicted to be bounded
by the maximal conductance

Gmax =
e2

2
�
sin2l = 0.68210

e2

2
�
, �62�

obtained whenever the magnetization M = �n↑−n↓� /2 is equal
to ±1/4. The heights of the fRG resonances are in excellent
agreement with Eq. �62�. Indeed, as demonstrated in the inset
to Fig. 6, the fRG occupancies and conductance comply to
within extreme precision with the exact relation of Eq. �55�.
As for the functional form of the Kondo temperature TK, its
exponential dependence on �0 is very accurately described by
Eq. �29�. In the absence of a precise expression for the pre-
exponential factor when �↑��↓, we employ the expression

TK = ��U�tot/
�exp� 
�0�U + �0�
2U��↑ − �↓�

ln
�↑
�↓
� , �63�

which properly reduces to Eq. �B4� �up to the small �2 cor-
rection in the exponent� when �↑=�↓=�.

The occupancies and conductance of Fig. 6 can be fully
understood from our general discussion in Sec. III. Both
quantities follow from the magnetization M, which vanishes
at �0=−U /2 due to particle-hole symmetry. As a conse-
quence, the two levels are equally populated at �0=−U /2 and
the conductance vanishes �see Eqs. �44� and �54��. Thus,
there is a simultaneous phase lapse and an inversion of popu-
lation at �0=−U /2, which is a feature generic to �=b=0 and

arbitrary Â. As soon as the gate voltage is removed from

FIG. 6. �Color online� The occupation numbers �ni� and conduc-
tance G �in units of e2 / �2
� �� as a function of �0+U /2 �in units of
�tot= ��↑+�↓��, calculated from Eqs. �40� and �53� based on the
mapping onto the Kondo model. The model parameters are identical
to those used in Fig. 2 of Ref. 11, lower left-hand panel: h=�=0,
U /�tot=6, �↑ /�tot=0.62415, and T=0. The explicit tunnelling ma-
trix elements are detailed in Eq. �59�, corresponding to the rotation
angles l=2.1698 and d=−0.63434 �measured in radians�. The
angle h equals zero. The inset shows functional renormalization-
group data as defined in Ref. 11, corrected for the renormalization
of the two-particle vertex �Refs. 12 and 46�. The small symbols in
the inset show the conductance as calculated from the fRG occupa-
tion numbers using our Eq. �55�. The horizontal dotted lines in each
plot mark the maximal conductance predicted by Eq. �55�,
�e2 /2
� �sin2l.
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−U /2, i.e., �0=−U /2+�� with ���0, a finite magnetization
develops due to the appearance of a finite effective magnetic

field h� tot=htot
z ẑ with

htot
z �

�↑ − �↓



ln

1 + 2��/U

1 − 2��/U
�64�

�see Eq. �33��. Note that the sign of htot
z coincides with that of

��, hence M is positive �negative� for �0	−U /2 ��0�
−U /2�. Since cos d	0 for the model parameters used in
Fig. 6, it follows from Eq. �54� that �n1�	 �n2� ��n1�� �n2��
for �0	−U /2 ��0�−U /2�, as is indeed found in Fig. 6.
Once again, this result is generic to �=b=0, except for the
sign of cos d which depends on details of the tunnelling

matrix Â.
In contrast with the individual occupancies, the conduc-

tance G depends solely on the magnitude of M, and is there-
fore a symmetric function of ��. Similar to the rich structure
found for �↑=�↓ and �	0 in Fig. 4, the intricate conduc-
tance curve in Fig. 6 is the result of the interplay between htot

z

and TK, and the nonmonotonic dependence of G on �M�. The
basic physical picture is identical to that in Fig. 4, except for
the fact that the effective magnetic field htot

z is now itself a
function of the gate voltage �0.

As a rule, the magnetization �M� first increases with ����
due to the rapid increase in htot

z . It reaches its maximal value
Mmax at some intermediate ���� before decreasing again as
���� is further increased. Inevitably �M� becomes small again
once ���� exceeds U /2. The shape of the associated conduc-
tance curve depends crucially on the magnitude of Mmax,
which monotonically increases as a function of U. When
Mmax�1/4, the conductance features two symmetric
maxima, one on each side of the particle-hole symmetric
point. Each of these peaks is analogous to the one found in
Fig. 4 for ��hc. Their height steadily grows with increasing
U until the unitarity condition Mmax=1/4 is met. This latter
condition defines the critical repulsion Uc found in Ref. 11.
For U	Uc, the maximal magnetization Mmax exceeds one-
quarter. Hence the unitarity condition M = ±1/4 is met at two
pairs of gate voltages, one pair of gate voltages on either side
of the particle-hole symmetric point �0=−U /2. Each of the
single resonances for U�Uc is therefore split in two, with
the inner pair of peaks evolving into the correlation-induced
resonances of Ref. 11. The point of maximal magnetization
now shows up as a local minimum of the conductance, simi-
lar to the point �0=−U /2 in Fig. 4 when �	hc.

For large U��tot, the magnetization �M� grows rapidly as
one departs from �0=−U /2, due to the exponential smallness
of the Kondo temperature TK��0=−U/2. The dot remains polar-
ized throughout the local-moment regime, losing its polariza-
tion only as charge fluctuations become strong. In this limit
the inner pair of resonances lie exponentially close to �0=
−U /2 �see below�, while the outer pair of resonances ap-
proach ��� � �U /2 �the regime of the conventional Coulomb
blockade�.

The description of this regime can be made quantitative
by estimating the position ±��CIR of the correlation-induced
resonances. Since M→MK�htot

z /TK� deep in the local-
moment regime, and since ��CIR��tot for �tot�U, the

correlation-induced resonances are peaked at the two gate
voltages where htot

z � ±2.4TK��0=−U/2. Expanding Eq. �64� to
linear order in ��CIR/U�1 and using Eq. �63� one finds

��CIR � 0.6

U

�↑ − �↓
TK��0=−U/2

= 0.6
U�U�tot

�↑ − �↓
exp	− 
U ln��↑/�↓�

8��↑ − �↓�

 . �65�

Here the preexponential factor in the final expression for
��CIR is of the same accuracy as that in Eq. �63�.

We note in passing that the shape of the correlation-
induced resonances and the intervening dip can be conve-
niently parametrized in terms of the peak position ��CIR and
the peak conductance Gmax. Expanding Eq. �64� to linear
order in �� /U�1 and using Eq. �44� one obtains

G���� = Gmax sin2�2
MK	2.4��

��CIR

� , �66�

where MK�h /TK� is the universal magnetization curve of the
Kondo model �given explicitly by �B1��. This parametriza-
tion in terms of two easily extractable parameters may prove
useful for analyzing future experiments.

It is instructive to compare Eq. �65� for ��CIR with the
fRG results of Ref. 11, which tend to overestimate ��CIR. For
the special case where aL1=aR1 and aL2=−aR2, an analytic
expression was derived for ��CIR based on the fRG.11 The
resulting expression, detailed in Eq. �4� of Ref. 11, shows an
exponential dependence nearly identical to that of Eq. �65�,
but with an exponent that is smaller in magnitude by a factor
of 
2 /8�1.23.48 The same numerical factor appears to dis-
tinguish the fRG and the numerical renormalization-group
data depicted in Fig. 3 of Ref. 11, supporting the accuracy of
our Eq. �65�. It should be emphasized, however, that Fig. 3
of Ref. 11 pertains to the tunnelling matrix of Eq. �59� rather
than the special case referred to above.

We conclude the discussion of the case where �=b=0
with accurate results on the renormalized dot levels when the
dot is tuned to the peaks of the correlation-induced reso-
nances. The renormalized dot levels, �̃↑ and �̃↓, can be de-
fined through the T=0 retarded dot Green functions at the
Fermi energy,

G��� = 0� =
1

− �̃� + i��
. �67�

Here, in writing the Green functions of Eq. �67�, we have
made use of the fact that the imaginary parts of the retarded
dot self-energies, −��, are unaffected by the Coulomb repul-
sion U at zero temperature at the Fermi energy. The energies
�̃� have the exact representation21 �̃�=�� cot �� in terms of
the associated phase shifts ��=
�n��. Since M = ±1/4 at the
peaks of the correlation-induced resonances, this implies that
��=
 /2±�
 /4, where we have set ntot=1.49 Thus, the
renormalized dot levels take the form �̃�=����, resulting
in

�̃↑�̃↓ = − �↑�↓. �68�
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The relation specified in Eq. �68� was found in Ref. 11,
for the special case where aL1=aR1 and aL2=−aR2.48 Here it
is seen to be a generic feature of the correlation-induced

resonances for �=b=0 and arbitrary Â.

2. Nondegenerate levels: arbitrary � and b

Once ��2+b2�0, the conductance and the partial occu-
pancies can have a rather elaborate dependence on the gate
voltage �0. As implied by the general discussion in Sec. III,
the underlying physics remains driven by the competing ef-
fects of the polarizing field htot and the Kondo temperature
TK. However, the detailed dependencies on �0 can be quite
involving and not as revealing. For this reason we shall not
seek a complete characterization of the conductance G and
the partial occupancies �ni� for arbitrary couplings. Rather,
we shall focus on the case where no Aharonov-Bohm fluxes
are present and ask two basic questions: �i� under what cir-
cumstances is the phenomenon of a phase lapse generic? �ii�
under what circumstances is a population inversion generic?

When �L=�R=0, the conductance and the partial occu-
pancies are given by Eqs. �40� and �53�, respectively. Focus-
ing on G and on �n1−n2�, these quantities share a common
form, with factorized contributions of the magnetization MK
and the rotation angles. The factors containing MK�htot /TK�
never vanish when h sin �0, since htot is always positive.
This distinguishes the generic case from the parallel-field
configuration considered above, where phase lapses and
population inversions are synonymous with M =0. Instead,
the conditions for phase lapses and population inversions to
occur become distinct once h sin �0, originating from the
independent factors where the rotation angles appear. For a
phase lapse to develop, the combined angle l+sRh must
equal an integer multiple of 
. By contrast, the inversion of
population requires that d+sh=
 /2 mod 
. Here the de-
pendence on the gate voltage �0 enters solely through the
angle h, which specifies the orientation of the effective mag-

netic field h� tot �see Eq. �33��. Since the rotation angles l and
d are generally unrelated, this implies that the two phenom-
ena will typically occur, if at all, at different gate voltages.

For phase lapses and population inversions to be ubiqui-
tous, the angle h must change considerably as �0 is swept
across the Coulomb-blockade valley. In other words, the ef-

fective magnetic field h� tot must nearly flip its orientation in
going from �0�0 to �0�−U. Since the x component of the
field is held fixed at htot

x =h sin 	0, this means that its z
component must vary from htot

z �htot
x to −htot

z �htot
x as a func-

tion of �0. When this requirement is met, then both a phase
lapse and an inversion of population are essentially guaran-
teed to occur. Since htot

z crudely changes by

�htot
z 

2



��↑ − �↓�ln�U/�tot� �69�

as �0 is swept across the Coulomb-blockade valley, this
leaves us with the criterion

��↑ − �↓�ln�U/�tot� � ��2 + b2. �70�

Conversely, if ��2+b2� ��↑−�↓�ln�U /�tot�, then neither a
phase lapse nor an inversion of population will occur unless
parameters are fine-tuned. Thus, the larger U is, the more
ubiquitous phase lapses become.8,11

Although the logarithm ln�U /�tot� can be made quite
large, in reality we expect it to be a moderate factor of order
one. Similarly, the difference in widths �↑−�↓ is generally
expected to be of comparable magnitude to �↑. Under these
circumstances, the criterion specified in Eq. �70� reduces to
�↑���2+b2. Namely, phase lapses and population inver-
sions are generic as long as the �maximal� tunnelling rate
exceeds the level spacing. This conclusion is in line with that
of a recent numerical study of multilevel quantum dots.50

Finally, we address the effect of nonzero h=��2+b2 on
the correlation-induced resonances. When h��↑ ln�U /�tot�,
the effective magnetic field htot�h is large throughout the
local-moment regime, always exceeding �↑ and �↓. Conse-
quently, the dot is nearly fully polarized for all −U��0�0,
and the correlation-induced resonances are washed out.
Again, for practical values of U /�tot this regime can equally
be characterized by h��↑.

11

The picture for �↑ ln�U /�tot��h is far more elaborate.
When TK��0=−U/2�h, the magnetic field is uniformly small,
and no significant modifications show up as compared with
the case where h=0. This leaves us with the regime
TK��0=−U/2�h��↑, where various behaviors can occur.
Rather than presenting an exhaustive discussion of this limit,
we settle with identifying certain generic features that apply
when both components �h cos � and h sin  exceed
TK��0=−U/2. To begin with, whatever remnants of the
correlation-induced resonances that are left, these are shifted
away from the middle of the Coulomb-blockade valley in the
direction where �htot

z � acquires its minimal value. Conse-
quently, htot and TK no longer obtain their minimal values at
the same gate voltage �0. This has the effect of generating
highly asymmetric structures in place of the two symmetric
resonances that are found for h=0. The heights of these fea-
tures are governed by the “geometric” factors sin2�l+sRh�
at the corresponding gate voltages. Their widths are con-
trolled by the underlying Kondo temperatures, which can
differ substantially in magnitude. Since the entire structure is
shifted away from the middle of the Coulomb-blockade val-
ley where TK is minimal, all features are substantially broad-
ened as compared with the correlation-induced resonances
for h=0. Indeed, similar tendencies are seen in Fig. 5 of Ref.
11, even though the model parameters used in this figure lie
on the borderline between the mixed-valent and the local-
moment regimes.

VI. CONCLUDING REMARKS

We have presented a comprehensive investigation of the
general two-level model for quantum-dot devices. A proper
choice of the quantum-mechanical representation of the dot
and the lead degrees of freedom reveals an exact mapping
onto a generalized Anderson model. In the local-moment re-
gime, the latter Hamiltonian is reduced to an anisotropic
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Kondo model with a tilted effective magnetic field. As the
anisotropic Kondo model flows to the isotropic strong-
coupling fixed point, this enables a unified description of the
original model with general couplings in terms of the univer-
sal magnetization curve of the conventional isotropic Kondo
model, for which exact results are available. Various phe-
nomena, such as phase lapses in the transmission phase,7,8

charge oscillations,9,10 and correlation-induced
resonances11,12 in the conductance, can thus be accurately
and coherently described within a single physical frame-
work.

The enormous reduction in the number of parameters in
the system was made possible by the key observation that a

general, possibly non-Hermitian tunnelling matrix Â can al-
ways be diagonalized with the help of two simultaneous uni-
tary transformations, one pertaining the dot degrees of free-
dom, and the other applied to the lead electrons. This
transformation, known as the singular-value decomposition,
should have applications in other physical problems involv-
ing tunnelling or transfer matrices without any special under-
lying symmetries.

As the two-level model for transport is quite general, it
can potentially be realized in many different ways. As al-
ready noted in the main text, the model can be used to de-
scribe either a single two-level quantum dot or a double
quantum dot where each dot harbors only a single level.
Such realizations require that the spin degeneracy of the
electrons will be lifted by an external magnetic field. Alter-
native realizations may directly involve the electron spin. For
example, consider a single spinful level coupled to two fer-
romagnetic leads with noncollinear magnetizations. Written
in a basis with a particular ad hoc local spin quantization
axis, the Hamiltonian of such a system takes the general
form of Eq. �1�, after properly combining the electronic de-
grees of freedom in both leads. As is evident from our dis-
cussion, the local spin will therefore experience an effective
magnetic field that is not aligned with either of the two mag-
netizations of the leads. This should be contrasted with the
simpler configurations of parallel and antiparallel magnetiza-
tions, as considered, e.g., in Refs. 17, 35, and 51.

Another appealing class of systems where the subtle cor-
relation effects discussed in the present paper can be studied
experimentally are carbon-nanotube-based quantum dots. As
mentioned in the main text, the spectra of such devices natu-
rally contain pairs of nearly degenerate orbital levels with
opposite chirality. Both the charging energy and the single-
particle spacing between consecutive pairs of levels can be
sufficiently large to provide a set of well-separated electronic
states.52 The resulting energy-level structure can be tuned
with great flexibility by applying an external magnetic field
either perpendicular33 or/and parallel32 to the nanotube, thus
turning this system into a valuable test ground for probing
the Kondo physics addressed in this study.

Throughout this paper we have confined ourselves to
spinless electrons, assuming that the spin degeneracy has
been lifted by an external magnetic field. Our mapping can
equally be applied to spinful electrons by implementing an
identical singular-value decomposition to each of the two
spin orientations separately �assuming that the tunnelling

term is diagonal in and independent of the spin orientation�.
Indeed, there has been considerable interest lately in spinful
variants of the Hamiltonian of Eq. �1�, whether in connection
with lateral quantum dots,53,54 capacitively coupled quantum
dots,55–57 or carbon nanotube devices.58 Among the various
phenomena that have been discussed in these contexts, let us
mention SU�4� variants of the Kondo effect,55,56,58 and
singlet-triplet transitions with two-stage screening on the
triplet side.53,54

Some of the effects that have been predicted for the spin-
ful case were indeed observed in semiconductor59,60 and in
carbon nanotube32 quantum dots. Still, there remains a dis-
tinct gap between the idealized models that have been em-
ployed, in which simplifying symmetries are often imposed
on the tunnelling term, and the actual experimental systems
that obviously lack these symmetries. Our mapping should
enable the relaxation of such assumptions. Similar to the
present study, one may expect the more general models to
possess a single unified description of all tunnelling schemes
in terms of just a few basic low-energy scales. This may
provide valuable guidance for analyzing future experiments
on such devices.
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APPENDIX A: MAPPING PARAMETERS

In this Appendix we give the details of the mapping of the
original Hamiltonian, Eq. �1�, onto the generalized Anderson
Hamiltonian of Eq. �7�.

The first step is the diagonalization of the matrix Â, Eq.
�6�, which describes the coupling between the dot and the

leads in the original model. Since Â is generally complex and
of no particular symmetry, it cannot be diagonalized by a
single similarity transformation. Rather, two �generally dif-
ferent� unitary matrices, Rd and Rl, are required to achieve a
diagonal form,

�V↑ 0

0 V↓
� = Rl Â Rd

†. �A1�

This representation, known as the singular-value decomposi-
tion, is a standard routine in numerical packages. Here we
provide a fully analytical treatment of the 2�2 case relevant
to our discussion. To this end we parametrize the two rota-
tion matrices in the form
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Rd = ei�Aei��d/2��zU�d,�d� , �A2�

Rl = ei��l/2��zU�l,�l� , �A3�

where

U�,�� � � cos�/2� e−i� sin�/2�
− ei� sin�/2� cos�/2� � �A4�

describes a rotation by angle  about the axis −sin���x̂
+cos���ŷ.

The various parameters that enter Eqs. �A2� and �A3�
have simple geometrical interpretations. The two sets of
angles, �d ,�d� and �l ,�l�, are the longitudinal and the azi-
muthal angles of the vectors pointing along the direction of
the z axis which defines the corresponding spin variables in
Eq. �7�, see Fig. 7. The three angles �A, �d, and �l corre-
spond to the choice of the phases of the single-particle op-
erators d�

† and ck�
† . The latter angles are chosen such that the

matrix elements of the transformed Hamiltonian, Eq. �7�,
will be real with h sin �0. Note that Rd and Rl are deter-
mined up to a common overall phase. This degree of free-
dom has been exhausted in Eqs. �A2� and �A3� by requiring
that det Rl=1.

In order to determine the rotation matrices Rd and Rl, one

diagonalizes the Hermitian matrices ÂÂ† and Â†Â, whose
eigenvalues are evidently real and equal to �V��2. This calcu-

lation determines the matrices U�d ,�d� and U�l ,�l�, and
yields the values of �V��. Indeed, using Eqs. �A1�–�A3�, one
obtains

��V↑�2 0

0 �V↓�2
� = U�l,�l�ÂÂ†U†�l,�l�

= U�d,�d�Â†ÂU†�d,�d� . �A5�

Assuming �V↑ �	 �V↓� �the case where �V↑ � = �V↓� is treated
separately in Appendix A 2�, these two equations give

�V��2 = X ± Y , �A6�

d/l = 2 arctan�Y − Zd/l

Y + Zd/l
, �A7�

�d = arctan	aL1aL2 − aR1aR2

aL1aL2 + aR1aR2
tan
�

2

 + 
�d, �A8�

�l = arctan	aL2aR2 − aL1aR1

aL2aR2 + aL1aR1
tan
�

2

 + 
�l, �A9�

where

X =
1

2�
�i

a�i
2 , �A10�

Y = �X2 − �det Â�2, �A11�

Zd =
1

2 �
�=L,R

�a�1
2 − a�2

2 � , �A12�

Zl =
1

2 �
i=1,2

�aLi
2 − aRi

2 � , �A13�

and

2�d = 1 − sgn	�aL1aL2 + aR1aR2�cos
�

2

 , �A14�

2�l = 1 − sgn	�aL1aR1 + aL2aR2�cos
�

2

 . �A15�

The plus sign in Eq. �A6� corresponds to V↑, since the
spin-up direction is defined as the one with the larger cou-
pling, �V↑�2	 �V↓�2. The longitudinal angles 0�d ,l�
 are
uniquely defined by Eq. �A7�, while the quadrants for the
azimuthal angles −
 /2��d ,�l�3
 /2 must be chosen ac-
cording to Eqs. �A14� and �A15�. The auxiliary quantities in
Eqs. �A10�–�A13� obey the inequalities X�Y and Y� �Zd/l�.

The next step is to determine the angles �A, �d, and �l
which come to assure, among other things, that V↑	V↓ are
both real and non-negative. Let us begin with �A. When

det Â�0, i.e., for V↓	0, the angle �A is uniquely deter-
mined by taking the determinants of both sides of Eq. �A1�
and equating their arguments. This yields

FIG. 7. �Color online� The original dot degrees of freedom, d1
†

and d2
†, define a pseudo-spin-1

2 representation with the axes x�, y�,
and z�. The level indices 1 and 2 are identified in this representation
with ± 1

2 spin projections on the z� axis. The energy splitting � and
the hopping b combine to define the magnetic-field vector hm̂�. The
unitary matrix Rd takes the spin to a new coordinate system whose
axes are labelled with x, y, and z. The new “spin” labels �=↑ and
�=↓ represent ± 1

2 spin projections on the new z axis, whose direc-
tion is defined by the longitudinal and the azimuthal angles d and
�d. The new x axis lies in the plane of vectors ẑ and hm̂�. A similar
picture applies to the conduction-electron degrees of freedom,
where the lead index �=L ,R plays the same role as the original
level index i=1,2.
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�A = 1
2 arg det Â . �A16�

When det Â=0, the angle �A can take arbitrary values. This
stems from the fact that V↓=0, and therefore ck↓ can be at-
tached an arbitrary phase without affecting the form of Eq.
�7�. In this case we choose �A=0.

Next we rotate the Hamiltonian term Êd, which is the first
term of the isolated dot Hamiltonian, Eq. �3�. Upon convert-
ing to the rotated dot operators d↑

† and d↓
†, the single-particle

term Êd transforms according to

Êd → RdÊdRd
†. �A17�

Consider first the partial rotation U�d ,�d�ÊdU†�d ,�d� �see

Eq. �A2��. Writing Êd �as defined in Eq. �4�� in the form

Êd = �0 −
h

2
m̂� · �� �A18�

with

h = ��2 + b2 �A19�

and

m̂� = −
b

h
cos
�L − �R

2
x̂ +

b

h
sin
�L − �R

2
ŷ −
�

h
ẑ ,

�A20�

the partial rotation U�d ,�d�ÊdU†�d ,�d� gives

�0 −
h

2
m̂ · �� , �A21�

where m̂ is the unit vector obtained by rotating m̂� by an
angle −d about the axis −sin��d�x̂+cos��d�ŷ. Defining the
angle � �0,
� which appears in Eq. �7� according to
cos =mz, it follows from simple geometry that

cos  = −
�

h
cos d −

b

h
sin d cos��d + ��L − �R�/2� .

�A22�

The full transformation RdÊdRd
† corresponds to yet another

rotation of m̂ by an angle −�d about the z axis. The angle �d
is chosen such that the projection of m̂ onto the xy plane is
brought to coincide with the x direction. This fixes �d
uniquely, unless h sin  happens to be zero �whether because
h=0 or because  is an integer multiple of 
�. When
h sin =0, the angle �d can take arbitrary values. Physically
this stems from the fact that spin-up and spin-down degrees
of freedom can be gauged separately within Eq. �7�. We
choose �d=0 in this case. The explicit expression for �d
when h sin �0 is quite cumbersome and will not be speci-
fied. As for the remaining angle �l, it is fixed by the require-
ment that V� will be real and non-negative.

Note that the conditions for the two exactly solvable cases
quoted in the main text, Eqs. �10� and �11�, are readily de-
rived from our expressions for the eigenvalues V�. The first

case, Eq. �10�, corresponds to V↓=0, which requires det Â

=ei�aL1aR2−aL2aR1=0. This immediately leads to Eq. �10�.
The second solvable case, Eq. �11�, corresponds to equal
eigenvalues, which implies Y =0 �Eqs. �A6�, �A10�, and
�A11� remain intact for �V↑ � = �V↓��. By virtue of the inequali-
ties Y� �Zd/l�, this necessitates that Zd and Zl are both zero,
which gives rise to the first two conditions in Eq. �11�. The
remaining condition on the Aharonov-Bohm phase � follows
from substituting the first two conditions into the definition
of Y and equating Y to zero.

1. No Aharonov-Bohm fluxes

Of particular interest is the case where no Aharonov-
Bohm fluxes are present, �L=�R=0. In the absence of a real
magnetic field that penetrates the structure, the parameters
that appear in the Hamiltonian of Eq. �1� are all real. This
greatly simplifies the resulting expressions for the rotation
matrices Rd and Rl, as well as for the model parameters that
appear in Eq. �7�. In this section, we provide explicit expres-
sion for these quantities in the absence of Aharonov-Bohm
fluxes, focusing on the case where V↑	V↓. The case where
V↑=V↓ is treated separately in Appendix A 2.

As is evident from Eqs. �A8� and �A9�, each of the azi-
muthal angles �d and �l is either equal to 0 or 
 when �
=0. �The corresponding y� and y axes are parallel in Fig. 7.�
It is therefore advantageous to set both azimuthal angles to
zero at the expense of extending the range for the longitudi-
nal angles d and l from �0,
� to �−
 ,
�. Within this con-
vention, Eq. �A7� is replaced with

d/l = 2sd/l arctan�Y − Zd/l

Y + Zd/l
, �A23�

where

sd = sgn�aL1aL2 + aR1aR2� , �A24�

sl = sgn�aL1aR1 + aL2aR2� . �A25�

Similarly, the unit vector m̂� of Eq. �A20� reduces to

m̂� = −
b

h
x̂ −
�

h
ẑ , �A26�

which results in

m̂ = 	−
b

h
cos d +

�

h
sin d
x̂ − 	b

h
sin d +

�

h
cos d
ẑ

�A27�

and

 = 
 − arccos	b

h
sin d +

�

h
cos d
 . �A28�

Since the rotated unit vector m̂ has no y component, the
angle �d is either equal to 0 or 
, depending on the sign of

mx. Assuming det Â�0 and using Eqs. �A4� and �A16�, one
can write Eq. �A2� in the form

Rd = �sgn det Â�1/2ei
�1−s��z/4ei�d/2��y , �A29�
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s = sgn mx = sgn�� sin d − b cos d� . �A30�

Note that the first exponent in Eq. �A29� is equal to 1 for

s= +1, and is equal to ei�
/2��z for s=−1. If det Â=0 we set

sgn det Â→1 in Eq. �A29�, while for � sin d=b cos d we
select s= +1.

Proceeding to the remaining angle �l, we note that Rd of
Eq. �A29� is either purely real or purely imaginary, depend-
ing on whether

sR = s sgn det Â �A31�

is positive or negative. Since both ei�l/2��y and Â are real
matrices, then ei��l/2��z must also be either purely real or
purely imaginary in tandem with Rd in order for the eigen-
values V↑ and V↓ to be real. This consideration dictates that
�l is an integer multiple of 
, with an even �odd� integer for
positive �negative� sR. The end result for Rl is therefore

Rl = �Rei
�1−sR��z/4ei�l/2��y . �A32�

Here �R= ±1 is an overall phase which comes to assure that
the eigenvalues V↑ and V↓ are non-negative.

2. Isotropic couplings, V_=V`

Our general construction of the rotation matrices Rd and
Rl fails when �V↑ � = �V↓ � =V. Equations �A6�, �A10�, and
�A11� remain intact for �V↑ � = �V↓�, however the angles d/l
and �d/l are ill-defined in Eqs. �A7�–�A9�. This reflects the

fact that the matrices Â†Â and ÂÂ† are both equal to V2 times
the unit matrix, hence any rotation matrix U� ,�� can be
used to “diagonalize” them. There are two alternatives for
treating the isotropic case where �V↑ � = �V↓�. The first possi-

bility is to add an infinitesimal matrix �B̂ that lifts the de-

generacy of �V↑� and �V↓�: Â→ Â+�B̂. Using the general con-
struction outlined above and implementing the limit �→0, a
proper pair of rotation matrices Rd and Rl are obtained. The
other alternative is to directly construct the rotation matrices
Rd and Rl pertaining to this case. Below we present this
second alternative.

A key observation for the isotropic case pertains to the
“reduced” matrix

T̂ = �det Â�−1/2Â , �A33�

which obeys

T̂†T̂ = T̂T̂† = 1, det T̂ = 1. �A34�

As a member of the SU�2� group, T̂ can be written in the
form

T̂ = U�T,�T�ei��T/2��z �A35�

with T� �0,
�. Explicitly, the angles T, �T, and �T are
given by

T = 2 arccos��det Â�−1/2�aL1�� , �A36�

�T = 2 arg��det Â�−1/2aL1� , �A37�

and

�T = arg��det Â�−1/2aR1� − 
 − �T/2. �A38�

Exploiting the fact that �det Â�=V2, the matrix Â takes then
the form

Â = VRl
†Rd = Vei�AU�T,�T�ei��T/2��z, �A39�

where the angle �A is defined in Eq. �A16�.
Equation �A39� determines the matrix product Rl

†Rd. Any
two rotation matrices that satisfy the rightmost equality in

Eq. �A39� transform the tunnelling matrix Â to V times the
unit matrix, as is required. The rotation matrix Rd is subject
to yet another constraint, which stems from the requirement
that h sin �0 in Eq. �7�. We note that also this constraint
does not uniquely determine the matrix Rd.40 Perhaps the
simplest choice for Rd is given by

Rd = ei�Aei��d/2��z �A40�

with

�d =
1

2
��L − �R� +




2
�1 − sgn b� , �A41�

which corresponds to

h cos  = − �, h sin  = �b� . �A42�

Adopting the choice of Eq. �A40�, the rotation matrix Rl
takes the form

Rl = ei�z��d−�T�/2U�T,− �T� , �A43�

where T, �T, �T, and �d are listed above.

APPENDIX B: BETHE ANSATZ FORMULAS

In this appendix we gather for convenience all relevant
details of the exact Bethe ansatz solutions for the impurity
magnetization in the isotropic Kondo and Anderson models
in the presence of a finite magnetic field. Extensive reviews
of these solutions �including the anisotropic Kondo model�
are available in the literature.19,20,22 Here we only summarize
the main results of relevance to our analysis, and briefly
comment on the numerical procedure. We confine ourselves
to zero temperature, although explicit equations do exist also
at finite temperature. Throughout the Appendix we employ
units in which �Bg=1.

1. Isotropic Kondo model

We begin the presentation with the case of a Kondo im-
purity, before turning to the more elaborate case of an Ander-
son impurity. As a function of the magnetic field h, the mag-
netization of an isotropic spin-1

2 Kondo impurity is given by
the explicit expression �see, e.g., Eq. �6.23� of Ref. 22�
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M�h� =
− i

4�
�−�

+�
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�i� + 0�i�/2
 sech	�
2



�� − i0��	1

2
+ i
�

2


 	 h

2
TK

i�/


.

�B1�

Here ��z� is the complex gamma function. The Kondo tem-
perature, TK, is defined via the inverse of the spin suscepti-
bility,

TK
−1 � 2
 lim

h→0
M�h�/h . �B2�

Evidently, Eq. �B1� is a universal function of the ratio h /TK,
which is denoted in the main text by MK�h /TK�. It has the
asymptotic expansion

M�h� � � h/�2
TK�, h � TK,

1

2
−

1

4 ln�h/TH�
−

ln ln�h/TH�
8 ln2�h/TH�

, h � TK,

�B3�

where TH��
 /eTK.

2. Isotropic Anderson model

In contrast to the Kondo model, there are no closed-form
expressions for the total impurity occupancy ntot= �n↑+n↓�
and magnetization M = �n↑−n↓� /2 in the isotropic Anderson
model. The exact Bethe anstaz solution of the model pro-
vides a set of coupled linear integral equations from which
ntot and M can be computed. Below we summarize the equa-
tions involved and comment on the numerical procedure that
is required for solving these equations. The expressions de-
tailed below apply to arbitrary �0, U, h, and � at zero tem-
perature. In terms of the Hamiltonian of Eq. �7�, we restrict
the discussion to �=�↑=�↓ �isotropic Anderson model� and
sin =0 �parallel-field configuration�. The case sin �0 fol-
lows straightforwardly from a simple rotation of the dot and
the conduction-electron operators about the y axis.

Kondo temperature

The most accurate analytical expression that is available
for the Kondo temperature of the isotropic Anderson model
can be written as

TK = ��2U�/
�exp�
��2 + �0U + �0
2�/�2U��� , �B4�

where �=
� �V�2. This expression for TK exactly reproduces
Eq. �6.22� of Ref. 22 for the symmetric Anderson model,
�0=−U /2. It also coincides with Eq. �7.11� of Ref. 22 for the
Kondo temperature of the asymmetric model when U��.
Note that the �2 term in the exponent is usually omitted from
Eq. �B4� on the basis of it being small. It does in general
improve the estimate for TK.

In the local-moment regime, where Eq. �B4� is valid, the
impurity magnetization of the isotropic Anderson model is
dominated by the universal magnetization curve of Eq. �B1�
up to fields of the order of h��U�TK �see, e.g., lower

left-hand inset to Fig. 2�. At yet larger fields, h���U, the
magnetization of the Anderson model can no longer be de-
scribed by that of the Kondo model, as charge fluctuations
become exceedingly more important than spin flips. Rather,
M is well described by perturbation theory in �. Importantly,
the asymptotic expansion of Eq. �B3� properly matches �to
leading order in � /U� the perturbative result9 for M when
h��U. Thus, the two approaches combine to cover the
entire range in h for the Anderson model.

Bethe ansatz equations for the occupancy and magnetization

The Bethe ansatz solution of the Anderson model features
four key quantities, which are the distributions of the charge
and spin rapidities, �̃i/h�k� and �̃i/h���, respectively, for the
impurity �i� and the host �h� band. The total impurity occu-
pancy and magnetization are expressed as integrals over the
distributions of the charge and spin rapidities for the impu-
rity,

M =
1

2
�

−�

B

�̃i�k�dk , �B5�

nd = 1 − �
−�

Q

�̃i���d� . �B6�

The upper limits of integration in Eqs. �B5� and �B6� are
determined through implicit conditions on the corresponding
distribution functions for the host band,

h

2

= �

−�

B

�̃h�k�dk , �B7�

U + 2�0

2

= �

−�

Q

�̃h���d� . �B8�

As for the distributions of the rapidities for the impurity
and the host, these are determined by the same pair of linear
integral equations, only with different inhomogeneous parts,

�̃�k� +
dg�k�

dk
�

−�

B

R�g�k� − g�k����̃�k��dk�

+
dg�k�

dk
�

−�

Q

S�g�k� − ���̃���d� = �̃�0��k� , �B9�

�̃��� − �
−�

Q

R�� − ����̃����d��

+ �
−�

B

S�� − g�k���̃�k�dk = �̃�0���� , �B10�

where62

S�x� =
1

2 cosh�
x�
, �B11�

R�x� =
1

2

Re� 	1 + i

x

2

 − 	1

2
+ i

x

2

� , �B12�

KASHCHEYEVS et al. PHYSICAL REVIEW B 75, 115313 �2007�

115313-20



g�k� =
�k − �0 − U/2�2

2U�
�B13�

�here  is the digamma function�. The inhomogeneous parts
in Eqs. �B9� and �B10� are given in turn by

�̃i
�0��k� = �̃�k� +

dg�k�
dk

�
−�

+�

R�g�k� − g�k����̃�k��dk�,

�B14�

�̃h
�0��k� =

1

2
	1 +
dg�k�

dk
�

−�

+�

R�g�k� − g�k���dk�
 ,

�B15�

�̃i
�0���� = �

−�

+�

S�� − g�k���̃�k�dk , �B16�

�̃h
�0���� =

1

2

�

−�

+�

S�� − g�k��dk , �B17�

where �̃�k� is the Lorentzian function

�̃�k� =
1




�

�2 + �k − �0�2 . �B18�

Details of the numerical procedure

The main obstacle faced in a numerical solution of the
Bethe ansatz equations is the self-consistent determination of
the upper integration bounds that appear in Eqs. �B5�–�B10�.
These are computed iteratively according to the scheme

�̃h
�n−1�,�̃h

�n−1� ⇒ B�n�,Q�n� ⇒ �̃h
�n�,�̃h

�n�. �B19�

Starting with �̃h
�n−1� and �̃h

�n−1� as input for the nth iteration,
B�n� and Q�n� are extracted from Eqs. �B7� and �B8�. Using
the updated values for B and Q, �̃h

�n��k� and �̃h
�n���� are then

obtained from the solution of Eqs. �B9� and �B10�. This
cycle is repeated until convergence is reached. The first it-
eration in this procedure is usually initialized with �̃h

�0��k� and
�̃h

�0���� as input. Standard techniques are then used to ensure
rapid convergence of the iterative solution. Typically 15 to
30 iterations are required to achieve a relative accuracy of
10−4 for the vector �B ,Q�.

The core of this cycle is the solution of Eqs. �B9� and
�B10�. These are solved �for given values of B and Q� by
discretizing the integration interval with adaptively chosen
500–1000 mesh points. Once a self-consistent solution is
reached for B, Q, �̃h�k�, and �̃h���, the corresponding distri-
butions of rapidities for the impurity are obtained from a
single solution of Eqs. �B9� and �B10�. The impurity occu-
pancy and magnetization are calculated in turn from Eqs.
�B5� and �B6�.

To test the accuracy of our numerical results, we have
extensively checked them against the analytical solution for
the zero-field occupancy nd�h=0� and the zero-field suscep-
tibility dM /dh�h=0. In suitable parameter regimes, we have
also compared our results to perturbation theory in both U
and �. In all cases tested the relative errors in nd and M were
less than 0.05% and 0.5%, respectively. This accuracy can be
systematically improved by increasing the number of dis-
cretization points used in solving Eqs. �B9� and �B10� for the
distributions. Our results were also in full agreement with
those reported by Okiji and Kawasaki,23 except for M�h�
where up to 10% differences were found. Considering the
extensive set of checks that were applied to our results, it
appears that the discrepancy is due to lower numerical accu-
racy in the solution of Ref. 23.
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