Understanding complex magnetohydrodynamic activities associated with a relaxation in the HT-7 tokamak

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

(http://iopscience.iop.org/0741-3335/53/8/085019)

View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 210.73.19.161
The article was downloaded on 17/06/2011 at 03:56

Please note that terms and conditions apply.
Understanding complex magnetohydrodynamic activities associated with a relaxation in the HT-7 tokamak

Erzhong Li¹, Liqun Hu¹, V Igochine², O Dumbrajs³ and Kaiyun Chen¹

¹ Institute of Plasma Physics, Chinese Academy of Science, Hefei 230031, People’s Republic of China
² MPI für Plasmaphysik, Euratom-Association, D-85748 Garching, Germany
³ Institute of Solid State Physics, Association Euratom-University of Latvia, Kengaraga Street 8, LV-1063, Riga, Latvia

E-mail: lqhu@ipp.ac.cn (Liqun Hu)

Received 26 January 2011, in final form 18 May 2011
Published 16 June 2011
Online at stacks.iop.org/PPCF/53/085019

Abstract
A new relaxation instability with complex magnetohydrodynamics (MHD) activities is found in the HT-7 tokamak operational region, which manifests itself in bursts of hydrogen alpha-ray radiations, electron cyclotron emission and soft x-ray (SX) radiations on outer channels, as well as complex MHD perturbations, but without hard disruptions. The MHD modes are identified as $m/n = 2/1$, $m/n = 3/2$ and $m/n = 5/3$ just before the relaxation (m and n are poloidal and toroidal mode numbers, respectively). The Poincaré mapping, according to the measured perturbations of the MHD modes at the edge, is used to show the topology of magnetic field lines. It is found that a stochastic annular belt resulted just before the relaxation due to the $m/n = 5/3$ island overlapping with $m/n = 2/1$ and $m/n = 3/2$ islands. This qualitatively coincides with the results of SX tomography.

(Some figures in this article are in colour only in the electronic version)

1. Introduction
Macroscopic magnetohydrodynamics (MHD) instability plays an important role from the viewpoint of maximum achievable plasma parameters associated with tokamak safety operation [1]. The low q (q is the safety factor) limit and/or density limit disruptions are usually observed with complicated precursor oscillations [2]. Probably, the nonlinear interaction of MHD modes eventually leads to disruptions [3]. The resulting runaway electrons and heat power could damage the first wall [4]. Hence, the study of MHD instabilities is important in the field of magnetic confinement plasma.
A long-term problem is the core periodic relaxation, known as sawtooth instability, which was first observed in the ST tokamak [5, 6]. Then the Kadomtsev full magnetic reconnection model was used to explain the sawtooth in ST [7]. However, that model cannot account for the fast sawtooth crash in JET [8]. In addition, some novel sawtooth, observed as compound, giant and monster sawtooth, also challenged the Kadomtsev model [9–11]. There is hitherto no unified model which could explain this kind of core instability in different machines [12, 13]. Even if in the same machine, different heating methods probably bring in different effects on magnetic field reconnection, manifesting different phenomena on sawtooth [13–19].

The coexistence of tearing modes with different helicity further complicated not only the sawtooth, but also the disruption instability [20–24]. The mechanisms of disruptions have not been well understood from the viewpoint of MHD instability until now. Two categories of explanations seemed reasonable [25]. One was the single helicity model which claimed that a large $m/n = 2/1$ island interacted with the external perturbation field (e.g. mode locking). The other proposed that the interaction among tearing modes of different helicity caused the stochasticization of magnetic field lines leading to disruptions. It should be mentioned that, in recent years, the stochasticization has also been suggested as a possible explanation for the fast sawtooth crash in the ASDEX-Upgrade tokamak [26, 27].

In the present HT-7 experiments, a large number of discharges show the behaviors of relaxation which differ from the usual sawtooth crash as introduced above, and which are also not regarded as hard disruptions due to mode locking because the discharges could recover after a relaxation. Each relaxation is embodied in rapid enhancement of the hydrogen alpha-ray (H_α) radiations, electron cyclotron emission (ECE) and soft x-ray (SX) radiations on outer channels, as well as bursts of magnetic perturbations (Mirnov signals). The fast Fourier transform (FFT) analysis of Mirnov signals shows a broadened spectrum in addition to several coherent peaks which motivate us to study the complex MHD mode structures.

The following section describes the diagnostics and experiments. In section 3, experimental observations are shown. A comparison between experiments and numerical calculations is presented in section 4. We summarize the main results in section 5.

2. Descriptions of diagnostics and experiments

HT-7 is a medium-sized tokamak with circular section, whose major radius is $R_0 = 1.22$ m and minor radius $a = 0.27$ m [28]. The main diagnostics used here are briefly introduced. A 16-channel heterodyne radiometer is used for ECE which covers the frequency region 98–126 GHz [29]. Three SX arrays are employed for tomography analysis. They are located, respectively, on the horizontal, up-vertical and down-vertical windows in one poloidal cross section, and each array has 46 chords covering the whole plasma region [15]. The characteristics of MHD modes could be identified by magnetic probes, consisting of a poloidal and a toroidal Mirnov-coil array fixed on the inside of the vacuum vessel. The poloidal array has 12 probes, while the toroidal one has 9 probes. The confinement properties are monitored by a 35-channel H_α photodiode array. The diagnostics involved in our experiments are schematically shown in figure 1, where the H_α chord passes through the plasma near the center. The two SX chords in the SXC array are prominently drawn which are close to the two sampling locations of the ECE diagnostic.

Pure ohmic discharges are performed to exclude auxiliary heating effects (the fast particle effect or current driving effect). Figure 2 shows the waveform of a typical shot 110225. The plasma current is about $120\, \text{kA}$. The edge safety factor is $q_\text{e} = 6.6$. The central safety factor is found as $q_0 > 1$ because of the absence of $q = 1$ rational surface on SX signals. The line-averaged density is about $n_\text{e} \approx 3.5 \times 10^{19} \text{ m}^{-3}$. Along with MHD bursts as observed on Mirnov...
Figure 1. The setup of diagnostics involved in the present experiment. The three SX arrays named SXA, SXC and SXE. Each array has 46 chords covering the whole plasma. The two chords in SXC, almost across the locations of two ECE channels, are prominently drawn. The hydrogen alpha-ray radiation \((H_\alpha) \) nearly passes through the plasma center.

signals, SX signals crash at \(r = -2.44 \) cm, whereas the positive spikes appear on \(H_\alpha \) signals, on ECE signals at \(r = -15.2 \) cm and on SX signals at \(r = -15.8 \) cm. Meanwhile, the plasma current drops by nearly 3%. It seems puzzled, as observed in figure 2, that the SX signals at \(r = -2.44 \) cm show a crash while the ECE signals at \(r = 2.6 \) cm have a positive spike. However, one should note that the SX radiations reflect the plasma pressure [15]. Moreover, the ECE emission is a measure of electron temperature. Thus, this phenomenon (decreasing SX and increasing ECE) probably implies the deterioration of particle confinement. A detailed discussion about that is beyond the scope of this paper.

A series of discharges are performed to investigate the dependence of this kind of instability on the major plasma parameters. The results are shown in the operational region (figure 3). Relaxations with complex MHD activities (solid circles) occur with plasma current \(I_p = 80–130 \) kA, central line-averaged electron density \(n_e = (2–4) \times 10^{19} \) m\(^{-3}\) and central electron temperature \(\sim 1 \) keV. The solid line is a linear fit to the data denoted by solid circles. The normal discharges without MHD activity are denoted by open circles, while the quadrangle surface ‘D’ indicates disruptions observed in previous HT-7 experiments [30, 31].

3. Experimental observations of MHD modes

As indicated above, it is the purpose of this paper to understand the complex MHD activities during the phase of relaxation, and thus to study the magnetic field topology. Figure 4 shows the magnetic perturbations (figure 4(a)) and its time–frequency spectrum (figure 4(b)) during
a relaxation. The arrows indicate the main MHD modes identified from Mirnov signals by the FFT method combined with a singular value decomposition (SVD) analysis, which could identify the MHD modes at different frequency bands [32]. It is observed that the mode $m/n = 3/2$ is first destabilized at about $t = 438.2$ ms, and then the mode $m/n = 5/3$ is stirred. A broad spectrum ($f_{m,n} = 30–50$ kHz) is also observed, whereas it is difficult to discern their mode numbers from Mirnov signals. It is thus defined as the \textquote{high (m, n) modes’}. The other notable observation is that the three low-order modes are phase locked ($f_{3,2} \approx 2f_{2,1}$; $f_{5,3} \approx 3f_{2,1}$) in figure 4(b).

Figure 5 shows the power spectrum density of the raw Mirnov signals in figure 4(a). The three coherent peaks correspond to the three low-order modes. The broad spectrum is the characterization of the \textquote{high (m, n) modes’}. The dynamic characteristic of the low-order modes could be extracted by the FFT filtering method owing to their different frequencies. The results are illustrated in figure 6. It is observed that the mode $m/n = 2/1$ is saturated just before the excitation of $m/n = 3/2$ from a comparison between figures 6(b) and (c). However, the mode $m/n = 2/1$ is further destabilized accompanied by destabilization of the other two modes. It is difficult to discern which one or both of the modes $m/n = 3/2$ in figure 6(c) and $m/n = 5/3$ in figure 6(d) further destabilize the mode of $m/n = 2/1$. It is also hard to distinguish whether further growth of $m/n = 2/1$ mode or the growing $m/n = 3/2$ mode destabilizes the mode of $m/n = 5/3$ while the three modes coexist. However, it could be inferred that the interaction among the MHD modes leads to the relaxation near $t = 439.9$ ms in figure 2.

Complex MHD activities could also be found in SX radiations as illustrated in figures 6(e) and (f). The MHD properties at $t = 438.8$ ms are obviously different from those at $t = 437.5$ ms. Note that the mode $m/n = 3/2$ is destabilized at $t = 438.8$ ms, as indicated in figure 6(c). In contrast, only the mode $m/n = 2/1$ is present at $t = 437.5$ ms. Detailed
Figure 3. Operational region of the HT-7 tokamak: normal discharges (open circle), with complex modes (solid circle) and the previous disruptions (quadrangle surface denoted by ‘D’). The solid line is a linear fit to the data denoted by solid circles.

Figure 4. Time slice of the Mirnov signals during a relaxation: (a) raw signals and (b) the time–frequency spectrum. The arrows in (b) indicate the modes and their frequencies. The mode numbers at $f = 30–50$ kHz cannot be identified from Mirnov signals, and are defined as ‘high (m, n) modes’.

Comparisons can be found in SX tomography plots (figure 7) where the Fourier–Bessel inversion method is applied [15]. At $t = 437.5$ ms, only the $m/n = 2/1$ island structure is observed in figure 7(a) where the dashed line circle is the estimated location of the $q = 2$ rational surface (q is the safety factor), while the arrow in figure 7(b) ($t = 438.8$ ms) indicates a weaker structure due to the destabilization of the $m/n = 3/2$ mode, as shown in figure 6(c). At $t = 439.5$ ms, the tomography plot in figure 7(c) manifests the properties of the $m/n = 2/1$ island due to the large perturbations of the $m/n = 2/1$ island, but with a much weaker structure...
than that in figure 7(b) because of further growth of the mode \(m/n = 3/2\). It should be noted that the modes \(m/n = 2/1\), \(m/n = 3/2\) and \(m/n = 5/3\) are simultaneously observed at \(t = 439.86\) ms, \(t = 439.9\) ms and \(t = 440\) ms. These time points are marked by vertical arrows in figure 6(f). By comparing figure 7(d) with figure 7(e), one could find a much more constrictive hot core in figure 7(e) (\(t = 439.9\) ms) than that in figure 7(d) (\(t = 439.86\) ms). That is probably caused by the fast parallel-field transports due to the stochastization of magnetic field lines [15, 33, 34]. At \(t = 440\) ms (just after relaxation), the coherent structure, possessing the characteristics of the \(m/n = 2/1\) island, still exists, as indicated by the double arrow in figure 7(f).

4. MHD mode structures based on magnetic field line mapping

The mapping technique of magnetic field lines based on the Hamilton–Jacobi method has been discussed specifically, and applied in ASDEX-Upgrade [35–38]. It is implemented in our experiments to understand the topology of magnetic field lines with the observed magnetic islands, because the above experimental analysis has proposed that the stochastic magnetic field lines were probably responsible for the relaxation. This section aims to clarify which islands in SX tomography plots could lead to the stochastization of magnetic field lines. Based on those, it is necessary to obtain Poincaré mapping. The mapping technique requires the knowledge of perturbation Hamiltonian \(H_{mn}\) and safety factor profile (\(q\)-profile). The determination of both parameters is a challenging task in experiments.

As mentioned in previous sections, we only have two points (the resonance surface of \(q = 2\) and the edge value) to determine the \(q\)-profile. Thus, it could be parametrized as follows:

\[
q(\rho) = C_0 + \lambda \rho^2
\]

where \(\rho\) is the radius normalized to the minor radius of the plasma (i.e. \(\rho = r/a\)). The coefficients in equation (1) are found as \(\lambda = 5.2\) and \(C_0 = 1.4\) according to the position of the rational surface \(q = 2\) and the edge safety factor \(q_e = 6.6\). This parametrized \(q\)-profile could correctly describe the MHD mode positions in our experiments. As observed in figure 8, the rational surfaces \(q = 3/2\) and \(q = 5/3\) are both covered by equation (1), which is necessary
Figure 6. The raw Mirnov signals (a) and the three extracted signals by the FFT method at frequencies of $f(b) \sim 2f(c)$ and $\sim 3f(d)$. The dynamics of the three low-order modes can be observed. The mode $m/n = 2/1$ saturated before the mode $m/n = 3/2$ is destabilized. The mode $m/n = 5/3$ is also eventually destabilized. The SX signals at edge and center channels are shown in (e), as well as their enlargements in (f). The arrows with letters denote the time points for analysis: A($t = 437.5$ ms), B($t = 438.8$ ms), C($t = 439.5$ ms), D($t = 439.86$ ms), E($t = 439.9$ ms) and F($t = 440$ ms). The time points E and F are not shown in Mirnov signals because of space limitation.

because the modes $m/n = 3/2$ and $m/n = 5/3$ are also observed in addition to the mode $m/n = 2/1$ in experiments.

The other parameter for the magnetic field mapping is H_{mn}, which is the normalization of the perturbation flux to the toroidal magnetic flux, and results from the perturbation of MHD modes. Theoretically, it could be obtained by numerically solving the tearing mode equation. However, the experimental uncertainties of q-profiles limit the accuracy of numerical solution. The parametrized solution of perturbation flux was already obtained, and confirmed as a rational approximation to the solutions of the tearing mode equation [39]. In [37–39], it was parametrized as:

$$H_{mn} = \rho_{mn} \alpha \left(\frac{r}{r_{mn}} \right)^m \left(1 - \frac{r}{r_{mn}} \right)$$

for $r \leq r_{mn},$

$$H_{mn} = \rho_{mn} \frac{\alpha (1 - \beta) - \gamma + \gamma (r/r_{mn})}{(r/r_{mn})^{m+1}}$$

for $r > r_{mn}$

(2)
Figure 7. Tomography results of SX perturbations at (a) $t = 437.5\,\text{ms}$, (b) $t = 438.8\,\text{ms}$, (c) $t = 439.5\,\text{ms}$, (d) $t = 439.86\,\text{ms}$, (e) $t = 439.9\,\text{ms}$ and (f) $t = 440\,\text{ms}$. The dashed line circle is the estimated location of $q = 2$ rational surface in (a). The arrow indicates the weaker structure in (b) and (c) than that in (a) due to the destabilization of the $m/n = 3/2$ mode. Compared with the tomography contour in (d), the contour in (e) shows a shrunk hot core due to stochastic relaxation. In (f), the double arrow indicates a coherent structure possessing the $m/n = 2/1$ island properties.

to calculate the Poincaré mapping. Here, the parameters α, β and γ are the free parameters describing the shape of perturbation flux. The parameter r_{mn} is the location of the rational surface normalized to the minor radius. The parameter ρ_{mn} is the normalized coefficient under the condition that the perturbation flux amplitudes coincident with the experimental
measurements $H_{mn} = H_{mn}^{\text{exp}} \equiv B_{mn}/B$ at the edge. In this study, the free parameters α, β and γ are first chosen to make sure that they could describe the modes just before the relaxation, and then the same parameters are used in the calculations of Poincaré mapping according to the measurement values of magnetic perturbations from Mirnov signals at other time points. They are ascertained by comparisons with the SX tomography plots. The fitting parameters for each mode are eventually determined in our experiments and are inserted in figure 9. It is obvious that the parametrized solutions do not lose the general behaviors of tearing modes (e.g. the perturbation flux connects, but the derivation of its logarithm jumps at the resonant surface).

With the experimental measurement values H_{mn}^{exp} extracted from the Mirnov signals at $t = 439.86$ ms, as marked in figure 9, one can obtain the Poincaré mapping of the magnetic field lines which is illustrated in figure 10. It is found that a stochastic annular belt locates in the mapping of magnetic field lines. Outside the annular belt, the magnetic field lines are intact. This is due to the fact that, at $t = 439.86$ ms, the modes $m/n = 3/2$ and $m/n = 5/3$ coexist with the mode $m/n = 2/1$, and that the adjacent rational surfaces are close to each other leading to overlap of islands. Note that the rational surface of $q = 2$ is estimated as $r_21/a = 0.34$ from SX tomography, and that the mode $m/n = 5/3$ locates between $q = 2$ and $q = 3/2$ surfaces. Thus, the distance between two adjacent rational surfaces is small. Variations of location of $q = 2$ within experimental errors do not change the overall Poincaré mapping. This means that the Poincaré mapping shows almost the same stochastic annular belt as that in figure 10.

The same values of parameters α, β and γ are used to obtain the Poincaré mapping, but with measured perturbations H_{mn}^{exp} at other time points. At $t = 437.5$ ms, there is only the $m/n = 2/1$ perturbation with the amplitude $H_{21}^{\text{exp}} = 4 \times 10^{-4}$. The Poincaré mapping is shown in figure 11(a) where no stochastic region can be observed. From the Mirnov signals, we know that the $m/n = 2/1$ is saturated. The SX tomography only shows the $m/n = 2/1$ perturbations. At $t = 438.8$ ms, the mode $m/n = 3/2$ is also destabilized, as observed in the Mirnov signals. Its perturbation amplitude is small $H_{32}^{\text{exp}} = 8 \times 10^{-6}$, and the perturbation of
Figure 9. The parametrized perturbation fluxes as a function of the normalized radius r/a. The free parameters α, β and γ are fixed for each mode at different time points, and the marked perturbation values at the edge are extracted from Mirnov signals at $t = 439.86$ ms.

Figure 10. The Poincaré mapping at $t = 439.86$ ms where a stochastic annular belt of magnetic field lines could be observed. The perturbation fluxes are shown in figure 9.

The mode $m/n = 2/1$ has the same amplitude as that at $t = 437.5$ ms. The Poincaré mapping with these perturbations is illustrated in figure 11(b). It is observed that the $m/n = 3/2$ island takes shape. However, the width of the $m/n = 3/2$ island is small, which does not overlap with the $m/n = 2/1$ island. Thus, the stochastic region could not be observed. At the following time point ($t = 439.5$ ms), the perturbation amplitude of the mode $m/n = 3/2$ is $H_{32}^{\text{exp}} = 1 \times 10^{-5}$, and that of the mode $m/n = 2/1$ is still near $H_{21}^{\text{exp}} = 4 \times 10^{-4}$. The
Figure 11. The Poincaré mapping (a) at $t = 437.5$ ms with $H_{21}^{\text{exp}} = 4 \times 10^{-4}$, (b) at $t = 438.8$ ms with $H_{21}^{\text{exp}} = 4 \times 10^{-4}$ and $H_{32}^{\text{exp}} = 8 \times 10^{-6}$, (c) at $t = 439.5$ ms with $H_{21}^{\text{exp}} = 4 \times 10^{-4}$ and $H_{32}^{\text{exp}} = 1 \times 10^{-5}$, as well as (d) at $t = 440$ ms with $H_{21}^{\text{exp}} = 7.2 \times 10^{-4}$, $H_{32}^{\text{exp}} = 8 \times 10^{-5}$ and $H_{53}^{\text{exp}} = 6 \times 10^{-6}$. The arrows in (b) and (c) indicate the mode $m/n = 3/2$ destabilized. The double arrow in (d) indicates the coherent structure possessing the characteristics of $m/n = 2/1$ island.

$m/n = 3/2$ island can be clearly observed in figure 11(c). The two islands of $m/n = 3/2$ and $m/n = 2/1$ are still separated. However, the presence of the $m/n = 3/2$ island results in the weak structure in the SX tomography plots (figures 7(b) and (c)).

The remnant time point for analysis is $t = 440$ ms just after the relaxation, when the three modes of $m/n = 2/1$, $m/n = 3/2$ and $m/n = 5/3$ coexist with measured perturbation values of $H_{21}^{\text{exp}} = 7.2 \times 10^{-4}$, $H_{32}^{\text{exp}} = 8 \times 10^{-5}$ and $H_{53}^{\text{exp}} = 6 \times 10^{-6}$ from Mirnov signals. The Poincaré mapping is shown in figure 11(d) where a coherent structure, possessing the properties of $m/n = 2/1$ island as indicated by the double arrow, is still observed even though a large stochastic region exists. This is consistent with the SX tomography plot in figure 7(f), qualitatively at least.

5. Summary

Discharges with complex MHD activities are found in the HT-7 tokamak operational region, and are defined as relaxation because of the behaviors of short bursts on H_{α}, ECE, SX (outer
channels) and Mirnov signals. It is different from the usual sawtooth because the plasma current drops by nearly 3%. However, the discharges could recover after relaxation. They are thus ascribed to the category of minor disruption.

Experimental data analysis from Mirnov and SX signals indicated that the saturated $m/n = 2/1$ mode further grew with the destabilization of the $m/n = 3/2$ mode just before relaxation. The destabilization of the mode $m/n = 5/3$ made the adjacent islands overlap. The Poincaré mapping, based on the Hamilton–Jacobi method, revealed that the magnetic field lines were stochastic inside an annular belt. Thus, this kind of minor disruption was understood as a stochastic relaxation.

In conclusion, the complex MHD activity resulted from the interaction of the $m/n = 2/1$ mode with $m/n = 3/2$ and $m/n = 5/3$ modes leading to a stochastic annular belt of magnetic field lines, which was responsible for the relaxation in our experiments.

Acknowledgments

The authors would like to thank all the contributors in the HT-7 experiments. Special thanks go to the diagnostic team for the support. One of the authors, E Li, wishes to thank Dr Q Yu and Professor H Zohm (Max-Planck-Institut (MPI), Germany) for detailed discussions about soft x-ray tomography asymmetry and stochasticization, respectively. This work is supported by the National Natural Science Foundation of China under Grant No 10935004.

References

[22] Liang Y et al 2007 Nucl. Fusion 47 L21
[27] Igochine V et al 2008 Nucl. Fusion 48 062001
[34] Itoh K et al 1992 Nucl. Fusion 32 1851
[37] Igochine V et al 2006 Nucl. Fusion 46 741
[38] Dumbrajs O et al 2005 Phys. Plasmas 12 110704