

 7

Computational Methods and Modelling

Computer Modelling & New Technologies, 2003, Volume 7, No.2, 7-15
Transport and Telecommunication Institute, Lomonosov Str.1, Riga, LV-1019, Latvia

CLUSTER APPROACH TO HIGH PERFORMANCE COMPUTING

A. KUZMIN

Institute of Solid State Physics, University of Latvia, Kengaraga Street 8, LV-1063 Riga, Latvia

E-mail: a.kuzmin@cfi.lu.lv

The High Performance Computing (HPC) allows scientists and engineers to deal with very complex problems using fast
computer hardware and specialized software. Since often these problems require hundreds or even thousands of processor hours to
complete, an approach, based on the use of supercomputers, has been traditionally adopted. Recent tremendous increase in a speed
of PC-type computers opens relatively cheap and scalable solution for HPC using cluster technologies. Here we discuss basics of
cluster technology and present an example of cluster solution, implemented at the Institute of Solid State Physics of the University
of Latvia within the Latvian SuperCluster (LASC) project.
Keywords: high performance computing, cluster computing

1. Introduction

Development of new materials and production processes, based on high-technologies, requires a
solution of increasingly complex computational problems. However, even as computer power, data
storage, and communication speed continue to improve exponentially, available computational resources
are often failing to keep up with what users demand of them. Therefore high-performance computing
(HPC) infrastructure becomes a critical resource for research and development as well as for many
business applications. Traditionally the HPC applications were oriented on the use of high-end computer
systems - so-called "supercomputers". Before considering the amazing progress in this field, some
attention should be paid to the classification of existing computer architectures.

SISD (Single Instruction stream, Single Data stream) type computers. These are the conventional
systems that contain one central processing unit (CPU) and hence can accommodate one instruction
stream that is executed serially. Nowadays many large mainframes may have more than one CPU but
each of these execute instruction streams that are unrelated. Therefore, such systems still should be
regarded as a set of SISD machines acting on different data spaces. Examples of SISD machines are for
instance most workstations like those of DEC, IBM, Hewlett-Packard, and Sun Microsystems as well as
most personal computers.

SIMD (Single Instruction stream, Multiple Data stream) type computers. Such systems often
have a large number of processing units that all may execute the same instruction on different data in
lock-step. Thus, a single instruction manipulates many data in parallel. Examples of SIMD machines are
the CPP DAP Gamma II and the Alenia Quadrics.

Vector processors, a subclass of the SIMD systems. Vector processors act on arrays of similar
data rather than on single data items using specially structured CPUs. When data can be manipulated by
these vector units, results can be delivered with a rate of one, two and, in special cases, of three per clock
cycle (a clock cycle being defined as the basic internal unit of time for the system). So, vector processors
execute on their data in an almost parallel way but only when executing in vector mode. In this case they
are several times faster than when executing in conventional scalar mode. For practical purposes vector
processors are therefore mostly regarded as SIMD machines. Examples of such systems are Cray 1 and
Hitachi S3600.

MIMD (Multiple Instruction stream, Multiple Data stream) type computers. These machines
execute several instruction streams in parallel on different data. The difference with the multi-processor
SISD machines mentioned above lies in the fact that the instructions and data are related because they
represent different parts of the same task to be executed. So, MIMD systems may run many sub-tasks in
parallel in order to shorten the time-to-solution for the main task to be executed. There is a large variety
of MIMD systems like a four-processor NEC SX-5 and a thousand processor SGI/Cray T3E
supercomputers.

Besides above mentioned classification, another important distinction between classes of
computing systems can be done according to the type of memory access (Figure 1).

 8

Computational Methods and Modelling

Shared memory (SM) systems have multiple CPUs all of which share the same address space.
This means that the knowledge of where data is stored is of no concern to the user as there is only one
memory accessed by all CPUs on an equal basis. Shared memory systems can be both SIMD or MIMD.
Single-CPU vector processors can be regarded as an example of the former, while the multi-CPU models
of these machines are examples of the latter.

Distributed memory (DM) systems. In this case each CPU has its own associated memory. The
CPUs are connected by some network and may exchange data between their respective memories when
required. In contrast to shared memory machines the user must be aware of the location of the data in the
local memories and will have to move or distribute these data explicitly when needed. Again, distributed
memory systems may be either SIMD or MIMD.

Figure 1. Shared (left) and distributed (right) memory computer architectures

To understand better the current situation in the field of HPC systems and a place of cluster-type

computers among them, some brief overview of supercomputers history will be given below.
An important break-through in the field of HPC systems came up in the late 1970s, when the

Cray-1 and soon CDC Cyber 203/205 systems, both based on vector technology, were built. These
supercomputers were able to achieve unprecedented performances for certain applications, being more
than one order of magnitude faster than other available computing systems. In particular, the Cray-1
system [1] boasted that time a world-record speed of 160 million floating-point operations per second
(MFlops). It was equipped with an 8 megabyte main memory and priced $8.8 million. A range of first
supercomputers applications was typically limited by ones having regular, easily vectorisable data
structures and being very demanding in terms of floating point performance. Some examples include
mechanical engineering, fluid dynamics and cryptography tasks. The use of vector computers by a
broader community was initially limited by the lack of programming tools and vectorising compilers, so
that the applications had to be hand coded and optimised for a specific computer system. However,
commercial software packages became available in the 1980s for vector computers, pushing up their
industrial use. At this time, the first multiprocessor supercomputer Cray X-MP was developed and
achieved the performance of 500 MFlops.

Strong limitation for further scalability of vector computers was their shared-memory
architecture. Therefore, massive parallel processing (MPP) systems using distributed-memory were
introduced by the end of the 1980s. The main advantage of such systems is the possibility to divide a
complex job into several parts, which are executed in parallel by several processors each having dedicated
memory (Figure 1). The communication between the parts of the main job occurs within the framework
of the so-called message-passing paradigm, which was standardised in the message-passing interface
(MPI). The message-passing paradigm is flexible enough to support a variety of applications and is also
well adapted to the MPP architecture. During last years, a tremendous improvement in the performance of
standard workstation processors led to their use in the MPP supercomputers, resulting in significantly
lowered price/performance ratios.

Traditionally, conventional MPP supercomputers are oriented on the very high-end of
performance. As a result, they are relatively expensive and require special and also expensive
maintenance support. To meet the requirements of the lower and medium market segments, the
symmetric multiprocessing (SMP) systems were introduced in the early 1990s to address commercial
users with applications such as databases, scheduling tasks in telecommunications industry, data mining
and manufacturing.

 9

Computational Methods and Modelling

Better understanding of applications and algorithms as well as a significant improvement in the
communication network technologies and processors speed led to emerging of new class of systems,
called clusters of SMP or networks of workstations (NOW), which are able to compete in performance
with MPPs and have excellent price/performance ratios for special applications types. On practice,
clustering technology can be used for any arbitrary group of computers, allowing to build homogeneous
or heterogeneous systems. Even bigger performance can be achieved by combining groups of clusters into
HyperCluster or even Grid-type system [2], which will be briefly considered in the last section.

Figure 2. Top five supercomputer systems (November 2002) [6]

 It is worth to note, that by the end of 2002, the most powerful existing HPC systems (Figure 2)
have performance in the range from 3 to 36 TFlops. The top five supercomputer systems include Earth-
Simulator (35.86 TFlops, 5120 processors), installed by NEC in 2002 [3]; two ASCI Q systems (7.72
TFlops, 4096 processors), built by Hewlett-Packard in 2002 and based on the AlphaServer SC computer
systems [4]; ASCI White (7.23 TFlops, 8192 processors), installed by IBM in 2000 [4]; and, a pleasant
surprise, MCR Linux Cluster (5.69 TFlops, 2304 Xeon 2.4 GHz processors), built by Linux NetworX in
2002 for Lawrence Livermore National Laboratory (USA) [5]. According to the recent TOP500
Supercomputers List from November 2002 [6], cluster based systems represent 18.6% from all
supercomputers, and most of them (about 60%) use Intel's processors. Finally, one should note that
application range of modern supercomputers is very wide and addresses mainly industrial, research and
academic fields. The covered areas are related to telecommunications, weather and climate
research/forecasting, financial risk analysis, car crash analysis, databases and information services,
manufacturing, geophysics, computational chemistry and biology, pharmaceutics, aerospace industry,
electronics and much more.

In this paper we will introduce basics of cluster technology and consider an example of the HPC
cluster, built at the Institute of Solid State Physics (ISSP) of the University of Latvia.

2. Basics of Cluster Computing

Cluster computing refer to technologies that allow multiple computers, called cluster nodes, to
work together with the aim to solve common computing problems. A generic cluster architecture is
shown in Figure 3. Each node can be a single or multiprocessor computer, such as a PC, workstation or
SMP server, equipped with its own memory, I/O devices and operating system. The cluster, having
similar nodes, is called homogeneous, otherwise - heterogeneous. The nodes are usually interconnected
by local area network (LAN) based on one of the following technologies: Ethernet, Fast Ethernet, Gigabit
Ethernet, Myrinet [7], Quadrics Network (QsNet) [8], InfiniBand communication fabric [9], Scalable
Coherent Interface (SCI) [10], Virtual Interface Architecture (VIA) [11] or Memory Channel [12]. The

 10

Computational Methods and Modelling

speed of network technology is characterised by a bandwidth and a latency. Bandwidth means how much
information can be sent through a particular network connection, and latency is defined as the time it
takes for a networking device to process a data frame. A comparison of these two parameters for above
mentioned network technologies is given in Table 1. Note that a higher network speed is usually
associated with a higher price of related equipment. To improve further cluster performance, different
network topologies can be implemented in each particular case. Moreover, channel bonding technology
can be used in the case of the Ethernet-type networking to double the network bandwidth. To realise this
technology, two network interface cards (NICs) should be installed in each node, and two network
switches should be used, one for each channel, to form two separate virtual networks. The optimal choice
of the network type is dictated by demands on speed and volume of data exchange between several parts
of the application software, running on different nodes.

Figure 3. Typical cluster architecture [16]

TABLE 1. Comparison of network technologies used in cluster systems. Note that the latency of Ethernet devices depends strongly
on a particular switch realisation.

|Network Technology Bandwidth (MByte/sec) Latency (µsec/packet)
Ethernet 1.25 -

Fast Ethernet 12.5 158
Gigabit Ethernet 125 33

Myrinet 245 6
QsNet 340 2

InfiniBand 320, 1280 and 3840 <10
SCI 400 1.5
VIA 150 8

Memory Channel 100 3

Various operating systems, including Linux, Solaris and Windows, can be used to manage the

nodes. However, in order for the clusters to be able to pool their computing resources, special cluster-
enabled applications must be written using clustering libraries or a system level middleware [13] should
be used. The most popular clustering libraries are PVM (Parallel Virtual Machine) [14] and MPI
(Message Passing Interface) [15]; both are very mature and work well. By using PVM or MPI,
programmers can design applications that can span across an entire cluster's computing resources rather
than being confined to the resources of a single machine. For many applications, PVM and MPI allow
computing problems to be solved at a rate that scales almost linearly in relation to the number of
processors in the cluster.

The cluster architecture is usually optimised for High Performance Computing or High
Availability Computing. The choice of the architecture is dictated by the type of an application and
available budget. A combination of both approaches is utilised in some cases, resulting in a highly
reliable system, characterized by a very high performance. The principal difference between these two
approaches consists of that in the HPC case, each node in the cluster executes a part of the common job,

 11

Computational Methods and Modelling

whereas in the second case, several nodes perform or are ready to perform the same job and, thus, are able
to substitute each other in a case of failure.

High availability (HA) clusters are used in mission critical applications to have constant
availability of services to end-users through multiple instances of one or more applications on many
computing nodes. Such systems found their application as Web servers, e-commerce engines or database
servers. HA clusters use redundancy to ensure that a service remains running, so that even when a server
fails or must go offline for service, the other servers pick up the load. The system optimised for maximum
availability should not have any single point of failure, thus requiring a specific architecture (Figure 4).
Two types of HA clusters can be distinguished - shared nothing architecture and shared disk architecture.
In the first case, each computing node is using dedicated storage, whereas the second type of HA cluster
shares common storage resources, interconnected by Storage Area Network (SAN). The operation of HA
cluster requires normally special software, which is able to recognize the occurred problem and
transparently migrate the job to another node.

Figure 4. High availability cluster with no single point of failure

HPC clusters are built to improve processing throughput in order to handle multiple jobs of

various sizes and types or to increase performance. The most common HPC clusters are used to shorten
turnaround times on compute-intensive problems by running the job on multiple nodes at the same time
or when the problem is just too big for a single system. This is often the case in scientific, design analysis
and research computing, where the HPC cluster is built purely to obtain maximum performance during
the solution of a single, very large problem. Such HPC clusters utilise parallelised software that breaks
down the problem into smaller parts, which are dispatched across a network of interconnected systems
that concurrently process each small part and then communicate with each other using message-passing
libraries to coordinate and synchronize their results. The Beowulf-type cluster [17], which will be
described in the next section, is an example of the HPC system. Beowulf system is the cluster which is
built primarily out of commodity hardware components, is running a free-software operating system like
Linux or FreeBSD and is interconnected by a private high-speed network. However, some Linux clusters,
which are built for high availability instead of speed, are not Beowulfs.

While Beowulf clusters are extremely powerful, they are not for everyone. The primary
drawback of Beowulf clusters is that they require specially designed software in order to take advantage
of cluster resources. This is generally not a problem for those in the scientific and research communities
who are used to writing their own special purpose applications since they can use PVM or MPI libraries

LAN Switch 1 LAN Switch 2

Keep alive

Node 1 Node 2

Disk Storage 1 Disk Storage 2

Shared disk architecture Shared nothing architecture

LAN Switch 1 LAN Switch 2

SAN Switch 2SAN Switch 1

Keep alive

Node 1 Node 2

Disk Storage 1 Disk Storage 2

 12

Computational Methods and Modelling

to create cluster-aware applications. However, many potential users of the cluster technologies would like
to have some kind of performance benefit using standard applications. Since such applications have not
been written with the use of PVM or MPI libraries, such users simply cannot take advantage of a cluster.
This problem has been limited the use of cluster technologies to a small group of users for years.
Recently, a new technology, called openMosix [18], appears that allows standard applications to take
advantage of clustering without being rewritten or even recompiled.

OpenMosix is a "patch" to the standard Linux kernel, that adds clustering abilities and allows
any standard Linux process to take advantage of a cluster's resources. OpenMosix uses adaptive load-
balancing techniques and allows processes running on one node in the cluster to migrate transparently to
another node where they can execute faster. Because openMosix is completely transparent to all running
programs, the process that has been migrated does not even know that it is running on another remote
node. This transparency means that no special programming is required to take advantage of openMosix's
load-balancing technology. In fact, a default openMosix installation will migrate processes to the "best"
node automatically. This makes openMosix a clustering solution that can provide an immediate benefit
for many applications.

A cluster of Linux computers running openMosix can be considered as a large virtual SMP
system with some exclusions. The CPUs on a "real" SMP system can exchange data very fast, but with
openMosix, the speed at which nodes can communicate with one another is determined by the speed of
the network. Besides, openMosix does not currently offer support for allowing multiple cooperating
threads to be separated from one another. Also, like an SMP system, openMosix cannot execute a single
process on multiple physical CPUs at the same time. This means that openMosix will be not able to speed
up a single process/program, except to migrate it to a node where it can execute most efficiently. At the
same time, openMosix can migrate most standard Linux processes between nodes and, thus, allows for
extremely scalable parallel execution at the process level. Besides, if an application forks many child
processes then openMosix will be able to migrate each one of these processes to an appropriate node in
the cluster. Thus, openMosix provides a number of benefits over traditional multiprocessor systems.

The openMosix technology can work in both homogeneous and heterogeneous environments,
thus allowing to build clusters, consisting of tens or even hundreds of nodes, using inexpensive PC
hardware as well as a bunch of high-end multi-processor systems. The use of openMosix together with
new Intel's Hyper-Threading technology, available with the last generation of Intel Xeon processors,
allows additional improving of performance for threaded applications. Also existing MPI/PVM programs
can benefit from openMosix technology.

4. Latvian SuperCluster (LASC) as an Example of Cluster System

In this sections we will describe an example of the Beowulf-type cluster (Figure 5), called LASC

(Latvian SuperCluster), which was installed at the ISSP during 2002 [19]. The main goal of the LASC
project is to secure researchers with an access to HPC system, able to help in a solution of modern
physical problems by numerical simulations. The need for such installation is determined by a complexity
of tasks appearing now within fundamental and applied research projects in solid state physics and
materials science. Currently, the main use of the cluster is devoted to quantum chemistry calculations,
Monte-Carlo modelling and x-ray absorption spectra analysis.

A specific sort of physical problems and a limitation of financial resources forced a careful
choice of hardware and software components for the cluster construction. At the planning stage, several
criteria have been taken into consideration to optimize the cluster configuration:
• high speed for numerical calculations,
• large amount of physical memory, able to accumulate huge arrays appearing in quantum chemistry

calculations,
• reliable hardware with a possibility of upgrading and expanding,
• high speed networking between cluster nodes,
• easy maintenance and administration,
• secure access on pre-registration basis,
• lowest total cost.

As one can note, the last requirement is somewhat controversial to others therefore a
compromise have to be done. The "best" solution in the spring 2002, conforming mostly to specified

 13

Computational Methods and Modelling

requirements, was a cluster of SMP servers, equipped with two Intel Pentium-III CPUs and
interconnected through the Fast Ethernet switch. Therefore, the present cluster configuration (Table 2),
adopted according to the available budget, consists of five nodes (one front-end node plus four
computational nodes), which are Compaq ProLiant ML350 G2 servers. Only the front-end node has a
connection with the rest of the world (Internet) using one of the Network Interface Cards (NICs). The
other NICs on all nodes are connected to a HP ProCurve 2312 Fast Ethernet switch. The total resources
available to the users are 10 CPUs, having a peak power about 13 GFlops, 20 GB of physical memory
(RAM) and 336 GB of storage space on UATA-100 IDE/SCSI hard disks (expandable up to 3.3 TB).

Figure 5. LASC structure. The APC Smart-UPS are note shown

TABLE 2. Technical details of Latvian SuperCluster.

1. Front-end (master) node - Compaq ProLiant ML350 G2 server

• Two Intel Pentium® lll 1.26 GHz FC-PGA2 processors with 512-KB second level ECC cache
• ServerWorks LE 3.0 Chipset with 133-MHz Front Side Bus
• 4 GB PC133-MHz Registered ECC SDRAM memory (RAM)
• Compaq NC3163 Fast Ethernet 10/100 Mbit/s NIC (embedded) PCI 10/100
• Intel® PRO/1000 XT 64bit PCI Server Adapter (8490XT)
• IBM Deskstar 60.0 GB 60GXP (7200 rpm) UATA100-IDE Hard Drive
• Maxtor 120 GB DiamondMaxPlus9 (7200 rpm) UATA133-IDE Hard Drive
• Promise Technology Ultra100 TX2 PCI Controller Card
• Compaq 36.4 GB (10000 rpm) Hot Plug Wide Ultra3SCSI Hard Drive
• 40x IDE CD-ROM Drive
• 1.44 MB Floppy Drive
• Integrated ATI RAGE XL Video Controller with 8-MB SDRAM Video Memory
• Integrated Dual Channel Wide Ultra3 SCSI Adapter

2. Four computational nodes - Compaq ProLiant ML350 G2 servers
• Two Intel Pentium® lll 1.26 GHz FC-PGA2 processors with 512-KB second level ECC cache
• ServerWorks LE 3.0 Chipset with 133-MHz Front Side Bus
• 4 GB PC133-MHz Registered ECC SDRAM memory (RAM)
• Compaq NC3163 Fast Ethernet 10/100 Mbit/s NIC (embedded) PCI 10/100
• IBM Deskstar 60.0 GB 60GXP (7200 rpm) UATA100-IDE Hard Drive
• Promise Technology Ultra100 TX2 PCI Controller Card
• 40x IDE CD-ROM Drive
• 1.44 MB Floppy Drive
• Integrated ATI RAGE XL Video Controller with 8-MB SDRAM Video Memory
• Integrated Dual Channel Wide Ultra3 SCSI Adapter

3. Five APC Smart-UPS 620VA (one for each node)

4. Hewlett Packard ProCurve Switch 2312, 12 x 10/100 Mbps

5. Lynksys ProConnect 8-Station CPU KVM Switch

6. Monitor 17" Compaq V7550 (0.25, 1600x1200 max, Flat Screen), Keyboard, Mouse

 14

Computational Methods and Modelling

All main software, installed on the LASC cluster, is of open source type and is available for free
under GNU public license. The nodes are running under the Red Hat Linux operating system on the
private subnetwork, protected from the Internet by a firewall. The cluster is accessible only via secure
shell interface (SSH2) and, additionally, the authorisation by the client's IP address is performed. For
users convenience, all information related to the cluster use and its real time status is available on-line
from the Web [19].

The storage disks space in the cluster is shared among all the nodes via Network File System
(NFS), so that all data as well as home directories of the users are accessible on all nodes in a similar way.
The users applications can run in interactive mode, in background or in batch mode. At present time, to
launch an application on the particular node, the user should login to that node first or use an automatic
job submitting system, called CLRUN. The CLRUN system allows (i) to submit a job from any node to
any node for execution and (ii) to display the load for every node and all user's processes on each nodes.
In the future, we plan to install openMOSIX load balancing system to improve the overall cluster
performance and to simplify its use. The programming environment available to the users consists of the
GNU set of compilers (C/C++/Fortran/Pascal) and the Intel's C++/Fortran compilers, which have better
degree of optimization and able to automatically parallelise a user's code on SMP systems. To use the
entire cluster's computing resources within user's applications, the popular clustering libraries such as
PVM and MPI are available.

The LASC system represents a classical example of the "home-made" Beowulf cluster. Similar
systems can be easily build for other than scientific needs with possibly even lower price. As an example,
standard off-the-shelf computers, equipped with much smaller memory and thus being much cheaper, can
be used as nodes in a cluster for multimedia encoding applications, such as sound MPEG-3 or video
MPEG-4 processing, and for images rendering to create stunning three-dimensional graphics.

5. Future trends - Grid computing

As computer networks become cheaper and faster, a new computing paradigm, called the Grid
[2], has evolved. The Grid is a large system of computing resources that performs tasks and provides to
users a single point of access, commonly based on the World Wide Web interface, to these distributed
resources. Users consider the Grid as a single computational resource. Resource management software,
frequently referenced as middleware, accepts jobs submitted by users and schedules them for execution
on appropriate systems in the Grid, based upon resource management policies. Users can submit
thousands of jobs at a time without being concerned about where they run. The Grid may scale from
single systems to supercomputer-class compute farms that utilise thousands of processors. Depending on
the type of applications, the interconnection between the Grid parts can be performed using dedicated
high-speed networks or the Internet.

By providing scalable, secure, high-performance mechanisms for discovering and negotiating
access to remote resources, the Grid promises to make it possible for scientific collaborations to share
resources on an unprecedented scale, and for geographically distributed groups to work together in ways
that were previously impossible. Several examples of new applications that benefit from using Grid
technology constitute a coupling of advanced scientific instrumentation or desktop computers with remote
supercomputers; collaborative design of complex systems via high-bandwidth access to shared resources;
ultra-large virtual supercomputers constructed to solve problems too large to fit on any single computer;
rapid, large-scale parametric studies, e.g. Monte-Carlo simulations, in which a single program is run
many times in order to explore a multidimensional parameter space.

The Grid technology is currently under intensive development. Major Grid projects include
NASA’s Information Power Grid, two NSF Grid projects (NCSA Alliance’s Virtual Machine Room and
NPACI), the European DataGrid Project and the ASCI Distributed Resource Management project. Also
first Grid tools are already available for developers. The Globus Toolkit [20] represents one such example
and includes a set of services and software libraries to support Grids and Grid applications.

Acknowledgements

The author is grateful to the Institute of Solid State Physics, University of Latvia, and the EC
Excellence Centre of Advanced Material Research and Technology for providing a financial support for
the LASC cluster installation. This work was also partially supported by the Latvian Government
Research Grants No. 01.0807 and 01.0821.

 15

Computational Methods and Modelling

References

[1] http://www.cray.com/
[2] http://www.gridcomputingplanet.com/
[3] http://www.es.jamstec.go.jp/
[4] http://www.llnl.gov/asci/platforms/
[5] http://www.llnl.gov/linux/mcr/
[6] http://www.top500.org/
[7] http://www.myrinet.com/
[8] http://www.quadrics.com/
[9] http://www.infinibandta.org/
[10] http://hsi.web.cern.ch/HSI/sci/sci.html
[11] http://www.vidf.org/
[12] http://www.hp.com/techservers/systems/symc.html
[13] http://www.cs.wisc.edu/condor/
[14] http://www.epm.ornl.gov/pvm/pvm_home.html
[15] http://www-unix.mcs.anl.gov/mpi/
[16] Buyya R. (ed.) (1999) High Performance Cluster Computing: Systems and Architectures, Prentice

Hall, New York.
[17] http://www.beowulf.org/
[18] http://openmosix.sourceforge.net/
[19] http://www.cfi.lu.lv/lasc/
[20] http://www.globus.org/

Received on the 25th of December 2003

