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Abstract: Estimating and predicting space weather is important to the space industry and space
missions. The driver of space weather, especially near the Earth, is solar activity, the study of which
is an important task. In particular, there is a direction of problems based on models of solar magnetic
field generation that require research. In our work, we build a nonlinear dynamic system of equations
that describes the behavior of the solar magnetic field harmonics based on the alpha-omega dynamo
model. We found that, at the beginning of the magnetic field generation process, when the dynamo
number significantly exceeds the threshold, the most rapidly growing waves are in the lead. Then,
over time, these waves stop growing quite quickly. In this case, the initially slowly increasing
harmonics of the magnetic field become the leaders, which then make the main contribution to the
process of magnetic field generation.
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1. Introduction

The term “space weather” came into wide use in the 1990s during a period of intense
space exploration [1]. This term covers the most practically important aspects of the science
of solar–terrestrial connections [2]. Space weather is concerned with the time-varying
conditions within the Solar System, including solar wind, emphasizing the space sur-
rounding the Earth, including conditions in the magnetosphere, ionosphere, thermosphere,
and exosphere [3]. In a practical sense, space weather topics include, for example, issues
of forecasting solar [4–12] and geomagnetic activity [13–17], studying the impact of solar
factors on technical systems (radio interference, radiation conditions, etc.) [18–21]. The
consequences of space weather conditions include effects on biological systems and people
[2–27]. Thus, solar activity is the driver of space weather [2,28–31] and is of particular
interest for research [32–34]. Solar activity is studied in many ways, with the help of
observations (e.g., Big Bear Solar Observatory, Big Bear, CA, USA; Kitt Peak National
Observatory, Tucson, AZ, USA; Solar Flare Telescope, Tokyo, Japan, etc.), round-the-clock
monitoring (plenty of information here [35]), as well as theoretical analysis. Future missions
are also planned, such as Lagrange (European Space Agency, Paris, France) [36], which
envisions two spacecraft to be positioned at Lagrangian points L1 and L5.

Solar activity includes processes associated with the formation and decay of strong
magnetic fields in the solar atmosphere. These fields are generated in the depths of the Sun
(in the convective zone) and then float to the surface [37].

The generation of magnetic fields in the Sun is usually associated with the dynamo
process, which is based on the combined action of the differential rotation of a celestial

Mathematics 2022, 10, 1655. https://doi.org/10.3390/math10101655 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math10101655
https://doi.org/10.3390/math10101655
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0003-2795-9361
https://doi.org/10.3390/math10101655
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math10101655?type=check_update&version=2


Mathematics 2022, 10, 1655 2 of 10

body and a measure of violation of the reflective invariance of flows in the zone of magnetic
field generation, the so-called hydrodynamic helicity. In the Parker dynamo kinematic
model [38], the velocity field is considered to be given, and the generated magnetic field
is considered in the form of traveling waves. The magnetic field is considered as two
components: a toroidal (or azimuthal) field extended along the parallels and a poloidal
field extended along the meridians. The toroidal magnetic field is obtained from the
poloidal one under the action of differential rotation, located inside the convective zone
of the Sun. The reverse process of the transformation of a toroidal magnetic field into a
poloidal one is carried out as a result of a violation of the mirror symmetry of convection in
a rotating body. The Coriolis force, when acting on rising and expanding (descending and
contracting) vortices, leads to the predominance of right-handed vortices in the northern
hemisphere (left-handed vortices in the southern hemisphere). A measure of violation
of the reflection invariance of flows in the convective zone of the Sun is hydrodynamic
helicity. The electromotive force resulting from the action of Faraday’s electromagnetic
induction, after averaging over the velocity fluctuations, acquires a component α~B parallel
to the average magnetic field ~B. It closes the self-excitation circuit in the Parker dynamo.
To characterize generation sources in dynamo theory, it is customary to combine the
amplitudes of the alpha effect and differential rotation into a dimensionless parameter—the
dynamo number, which becomes the main control parameter in the dynamo equations.

Solar cyclic activity associated with the generation of a magnetic field in the convective
zone of the Sun [38], according to observational data, has a complex structure: for ex-
ample, 22-year, quasi-biennial, secular cycles (Gleisberg cycle), global minima that occur
periodically every several hundred years [7,39–42]. In [43], the photometric data of the
star HR 1099 for the years 1975–2006 were analyzed, and 2 activity cycles with a period of
15–16 years and 5.3± 0.1 years were identified.

It can be assumed that such data may indicate that several waves of magnetic activity
can be generated in these celestial bodies, which can evolve in different ways over time.
The properties of such a wave packet should be determined by the spatial configuration of
the dynamo sources and the magnitude of the dynamo numbers.

In [44], it was shown that there is a class of exact analytical solutions in the problem
of generating several independent dynamo waves using the example of a plane problem
with two sources of generation. In such a problem, it was assumed that the distribution of
differential rotation has the form of two narrow potential wells, the profile of which can be
described by two delta functions, and the alpha effect does not depend on depth. It turned
out that each of the waves in this case mainly interacts with its source, and its frequency
depends on its physical parameters (dynamo number) and the degree of mutual overlap of
the waves decreases with increasing distance between the sources.

Thus, two or more waves may appear if there are two or more “potential holes”
(dynamo sources).

When the waves from such dynamo sources have close frequencies, beats can occur
when they interact. Assumptions that this can lead to grand minima of solar activity were
made in [45,46]. In [7] for two-layer and in [47] for three-layer media, αΩ-dynamo models
with meridional matter flows were constructed, and the occurrence of global minima of
solar magnetic activity and the Gleisberg cycle was simulated. In these models, the authors
also tried to qualitatively reproduce the regimes of intense solar activity between long
minima. Such variations in solar activity could be associated with small changes in the
main parameters of the Sun, for example, meridional flows. However, this question is
still open.

Several waves can also arise in the case of one potential well wide enough to accom-
modate several wavelengths (as a function of depth along the convective layer).

It can be assumed that, in this case, one cannot limit oneself to only one eigenfunc-
tion corresponding to the most rapidly growing solution due to the suppression of the
alpha effect.
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The purpose of this work is to show, using the example of a one-dimensional αΩ-
dynamo model, how waves evolve in a nonlinear medium.

2. Main Equations

The system of αΩ-dynamo Parker equations [38] in the quasi-one-dimensional case
has the following form:

∂A
∂t

= RααB +
∂2 A
∂θ2 (1)

∂B
∂t

= Rω sin θ
∂A
∂θ

+
∂2B
∂θ2 (2)

where the vector potential of the poloidal magnetic field A and the toroidal component B of
the magnetic field are functions of latitude θ, measured from the pole, and time t. Dimen-
sionless numbers Rα and Rω, similar to the Reynolds number known in hydrodynamics,
characterize the intensity of the α-effect and differential rotation, respectively (D = RαRω ).
Usually, in solar dynamo problems, D is taken to be less than zero, and the modulus D is
assumed in the analysis; therefore, in what follows, we will assume the modulus of D. Here,
we use the simplest scheme for stabilizing the growth of the magnetic field, the so-called
helicity suppression. Within the framework of this scheme, it is considered that:

α = α0(θ)/(1 + ξ2B2) ≈ α0(θ)(1− ξ2B2), (3)

where α0(θ) is the value of helicity in a non-magnetized medium, and B0 = ξ−1 is the
magnetic field at which the alpha-effect is significantly suppressed. We use the simplest
form for the alpha-effect α0(θ) = cos θ, which satisfies the condition that it be equal to
zero at the equator and also satisfies the condition that the alpha-effect is strongest at high
latitudes (due to its dependence upon the Coriolis force). As boundary conditions, we use
the conditions A(0) = B(0) = A(π) = B(π) = 0, which correspond to dipole symmetry.
The choice of the factor in the second equation corresponds to a decrease in the length of the
parallel near the pole. Curvature effects are omitted in the diffusion terms. It is assumed
that the radial gradient of the angular velocity does not change with θ. For reasons of
symmetry, Equations (1) and (2) can be considered only for one (northern) hemisphere with
conditions of antisymmetry (dipole symmetry) or symmetry (quadrupole symmetry) at the
equator. Since the solar magnetic field has a dipole symmetry, this case is considered in
this model. In system (1) and (2), time and distances are measured in dimensionless units,
which are introduced when constructing the dynamo number. In particular, the unit of
time is not a year but the so-called diffusion time, during which a liquid particle passes
through the convective zone under the action of turbulent diffusion. The estimate of
diffusion time as a function of the parameters of the medium in which the field diffuses
trough convective layer is d2

β , where d is the thickness of the convective layer, and β is the
coefficient of turbulent diffusion. The magnetic field is measured in units of the value at
which the non-linear stabilization of the solution occurs (usually, it is assumed that there is
an equipartition between the kinetic energy of turbulence and magnetic energy).

We will study systems (1) and (2) by expanding them into Fourier series with time-
dependent coefficients. For the first time, such an approximation was proposed in [48]
and developed in [49–55]. Note that dynamic systems are also used for other dynamo
configurations, such as, for example, in [56], where the dynamic system was built for a disk
dynamo system with three coupled conducting disks, and the interaction-induced time
delay was taken into account in the dynamic control equations. Within the framework of
this approximation, it is assumed that the excited magnetic field of a star or planet can be
described by a suitably chosen dynamical system. The dynamo equations are projected
onto a system of eigenfunctions for the problem of magnetic field damping in the absence
of generation sources. The solution of the dynamo system is actually represented as a
Fourier series with time-dependent unknown coefficients, which can be found from the
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dynamic system for them obtained after substituting the chosen type of solution into the
original dynamo system.

In [48–55], the solution was built on the basis of a small number of higher eigen-
functions (no more than three). However, when narrowing the basis of eigenfunctions
(modes), it is very important not to go beyond the limits of applicability of this method
when choosing large values of the dynamo number.

If the initially specified dynamo number significantly exceeds its threshold value
(threshold of magnetic field generation), it is necessary to take into account a larger number
of eigenfunctions (thus, their Fourier harmonics). If this condition is violated, the entire
nonlinear picture of instability saturation will turn out to be incorrect. Depending on
whether the dynamo number exceeds its threshold value, we estimate the minimum
number of modes (harmonics) that must be taken into account on this basis. If the short-
wavelength modes initially fall into the region of sufficiently strong attenuation due to
magnetic turbulent diffusion, their contribution becomes negligible. Let a sufficiently large
dynamo number D0 be specified at the initial moment of time, and let us estimate the
minimum number of modes that must be taken into account on the basis of eigenfunctions
when solving the nonlinear dynamic problem of magnetic field growth and its nonlinear
saturation. At large D0, when the number of growing modes is sufficiently large (n >> 1), it
is possible to apply the assumption of weak spatial inhomogeneity and find the local value
of the growth rate of the dynamo wave. Let us substitute into the system of Equations (1)
solutions in the form A = Ãexpi(2n+1)θexpωt, B = B̃expi2nθexpωt, taking into account the
dipole symmetry of the magnetic field. For n >> 1, it can be shown that if we put the

average value sin θ cos θ ≈ 1/4, then Reω = ± 1√
2

√
2nD

4 − (2n)2. The field generation

condition is ω > 0, hence D > 8(2n)3. In a nonlinear balance, it is also necessary to
take into account damped waves with slightly larger n. It is the nonlinear transfer of
energy from unstable modes to dampened ones that ensures the establishment of nonlinear
saturation. Then, when the dynamo number significantly exceeds the generation threshold,
it is necessary to take into account the number of modes n > 1

4 D1/3. Then, the applicability
of the method, depending on the number of modes taken into account, will be limited to
the following ranges of dynamo numbers: for n = 2, D < 512; n = 3, D < 1728; n = 5,
D < 8000; and n = 10, D < 64,000. We note that in [51,53,55] the case n = 2 was considered,
and the dynamo problem was also studied on regions of dynamo numbers that go beyond
the region of applicability of the method (In [51] the region of dynamo numbers D was up
to 1000, in [53] up to 3000, and work [55] is based on the study of the behavior of dynamo
waves in the range D from 104 to 107).

In typical cases, as in the Sun and stars, the expected dynamo number is much
higher than the instability threshold. High modes with a sufficiently large wave vector k
become unstable, which requires a more complex multimode approach to the nonlinear
problem. In addition, the original statement took into account that the alpha effect α and
the differential rotation depend on θ, α is proportional to cos θ, and the differential rotation
is proportional to sin θ in the case when the angle is measured from the pole.

It can be shown that the amplitudes of the magnetic field at the saturation stage
correspond with high accuracy to the complete compensation of the excess of the dy-
namo number over the threshold due to the nonlinear decrease in the α effect D− Dcr =
δαnonlin∆V/(β2k2), where δαnonlin = α0B2/B2

0, β is the coefficient of turbulent diffusion,
and ∆V is the differential rotation jump at the thickness of the effective magnetic field
generation layer.

To study the behavior of harmonics in our problem, consider the case n = 10, for which
the dynamo number of the Sun is in the range of applicability of the method. We also took
into account a larger number of harmonics and found that their contribution to the solution
is negligible. The toroidal field B and the vector potential A can be represented as:

B(θ, t) =
10

∑
n=1

bn(t) sin (2nθ) (4)
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A(θ, t) =
10

∑
n=1

an(t) sin ((2n + 1)θ) (5)

Substituting the chosen type of solution into system (1) and (2), we obtain a dynamic
system of 20 equations for unknown functions an(t) and bn(t). Since this system turns out
to be too cumbersome, we do not present it here.

3. Results

Figures 1 and 2 show the initial stage of generation of the solar magnetic field for
different and identical, respectively, initial amplitudes of the toroidal magnetic field for a
dynamo number exceeding the threshold value. Matlab was used to solve the dynamic
system equations, and the calculation time was seconds for the selected time intervals,
which are shown in the figures. The horizontal axis corresponds to time, and the vertical
axis corresponds to the amplitude of the toroidal magnetic field. The magnetic field
components are marked with numbers corresponding to the number n from relations (3)
and (4). It can be seen from the figure that, over time, even at large initial values of the
amplitude of the field of the shortest waves, only the longest wavelength harmonics remain.
This is the result of a nonlinear decrease in the dynamo number during the establishment of
the nonlinear dynamo stage, which is accompanied by the transition of short-wavelength
modes from an unstable state to a damped one.

In the multimode model, with a large excess of criticality, over time, significant sup-
pression of high modes occurs and the main contribution will be made by the fundamental
(long-wavelength) modes. This can be considered the result of self-organized criticality.
However, there will be “impurities” of higher modes in the vibration spectrum. The pres-
ence of such “impurities” may play a role in explaining some of the observations.

Figure 3 shows the regime of magnetic field generation in the form of oscillations,
which are present in solar activity. The dynamo number is far from the threshold value
and corresponds to the solar one. The horizontal axis corresponds to time, and the vertical
axis corresponds to the amplitude of the toroidal magnetic field. The figure shows the
10 first harmonics of the field. The harmonic with the longest wavelength has a large
amplitude and the number of this harmonic is marked with the number “1” in the figure.
The tenth harmonic tends to zero. The nearest harmonics to the first one have a small
non-zero amplitude due to the transfer of energy from the first harmonic to generate which
amplitude of the dynamo number is sufficient.

Figure 1. The dependence of the amplitude of the toroidal magnetic field on time for different initial
amplitudes at the initial stage of generation.
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Figure 2. The dependence of the amplitude of the toroidal magnetic field on time for the same initial
amplitudes at the initial stage of generation.

Figure 3. The dependence of the amplitude of the toroidal magnetic field on time for oscilla-
tory regime.

Figure 4 shows a butterfly diagram for the case of Figure 3 (the regime of magnetic
field generation in the form of oscillations). The horizontal axis corresponds to time,
and the vertical axis corresponds to the latitude of the Sun, measured in degrees, where 0
corresponds to the equator and 90 degrees to the pole. The amplitude of the magnetic field
is shown in the grayscale. The figure shows two patterns: one with a longer period and the
other with a shorter one.

Figure 4. Butterfly diagram for oscillatory regime.

The pattern with a long period has the form of a wave going from the poles to the
equator, has a duration of one diffusion unit, which corresponds to the observed butterfly
diagram for the 11-year solar cycle, where the wave of the toroidal magnetic field also
propagates from the poles to the equator. The pattern with a shorter period corresponds to
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a quasi-biennial cycle, and the wave has the same direction as in the observational data:
from the equator to the poles.

The resulting butterfly diagram has a qualitative difference from the picture of the
observed configuration of sunspots, most of which are usually located near the equator.
According to our model, we should observe sunspots distributed over all latitudes. This is
because our study did not limit the alpha-effect to low latitudes (we assumed the alpha-
effect dependence as cos θ, while θ was measured from the poles), so sunspot activity in
our dynamo-model is not limited to low latitudes at the base of the convection zone. For a
qualitative study of the time evolution of dynamo wave harmonics, this shortcoming does
not play a significant role, since their latitude profile does not critically affect their time
behavior for the simplest estimates.

Figure 5 shows dependence α-effect on time for case of Figures 3 and 4.

Figure 5. Dependence of α-effect on time.

From the results obtained, the following conclusion can be drawn. When the fastest
growing solution enters the nonlinear stage and the alpha effect decreases, starting from
some amplitudes, the wave stops growing; the neighboring harmonics, which initially
grew slowly, catch up with the previous ones; and the fastest of them also begin to decay.
Ultimately, the slowest growing waves come to the fore. A similar effect was noted in the
works of A. Brandenburg [57–59], who said that several different modes can be excited
before the saturation of the field generation. In the nonlinear mode, most of the modes are
suppressed by the most dominant mode, and therefore, the nonlinearity has the effect of
“self-cleaning" (nonlinear sweep). In [57–59], the simplest version of the dynamo in the box
was considered when, in a rectangular potential well (a well as in quantum mechanics),
there is no dependence on the coefficients of the equation on spatial coordinates. In our
paper, we chose the latitude-dependent spatial distribution profiles for the alpha-effect and
differential rotation to be solar-like. Thus, we solved the problem with a more complex
profile, and the solution had to be sought in the form of irritation in the Fourier series.
We have found how many terms in the expansion are sufficient to correctly describe the
generation of the magnetic field.

Therefore, to simulate the generation of a magnetic field with dynamo numbers signif-
icantly exceeding the threshold for generating a magnetic field, one cannot limit oneself
to only one (or even several) eigenfunctions corresponding to the most rapidly growing
solution. Such a wave eventually stops growing, leaves the game, and its contribution to
the process of magnetic field generation becomes insignificant. In other words, the dynamo
number decreases in the process of reaching the nonlinear saturation mode, and the modes
at the beginning of the process, which were the most unstable, would formally become
damped so that their amplitudes are eventually maintained by the nonlinear energy transfer
from large-scale waves.

4. Conclusions

We built the nonlinear dynamic system of equations that describes the behavior of the
solar magnetic field harmonics based on the alpha-omega dynamo model. At the beginning
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of the magnetic field generation process, when the dynamo number significantly exceeds
the threshold, the most rapidly growing waves are in the lead. Then, over time, these
waves stop growing quite quickly. In this case, the initially slowly increasing harmonics
of the magnetic field become the leaders, which then make the main contribution to the
process of magnetic field generation. This can be considered the result of self-organized
criticality. “Impurities” of higher modes can present in the vibration spectrum. It is due to
the nearest harmonics to the first one have a small non-zero amplitude due to the transfer
of energy from the first harmonic to generate which the amplitude of the dynamo number
is sufficient. The presence of such “impurities” may play a role in explaining the presence
of quasi-biennial oscillations in solar cycle.

The method used to study the behavior of the waves of the solar magnetic field and the
dynamo model has a number of limitations and simplifications. For example, the latitudinal
profile of the alpha-effect is not zero at high latitudes, and this leads to a qualitative differ-
ence between the theoretical and observed butterfly diagrams discussed above. Although,
it “does the right thing”, alpha tends to zero as magnetic field B starts to exceed B0 and
is widely used in solar dynamo models, it remains an extreme oversimplification of the
complex interaction between flow and field that characterizes MHD turbulence.

Also for the latitudinal profile of the differential rotation, we use the simplest form [58],
but for our task, it is quite adequate.

To further develop the proposed model, more realistic differential rotation and alpha-
effect profiles can be used, as well as meridional flows can be added. Questions of time
variation of solar activity from global minima to intense regular activity remain open,
in addition, the question of modeling the occurrence of explosive processes associated with
the generation of a magnetic field—superflares are still open, too.

Despite the existence of complex and much more realistic models [58,60] that require
lengthy calculations on supercomputers, our model allows us to give simple qualitative
estimates of the field behavior without resorting to large computational resources. Such
an approach can be useful in the initial testing of physical assumptions, on the basis of
which more complex and realistic models can then be built to more correctly reproduce the
processes under consideration.
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