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Abstract: Porous silicon (PS) is a promising material for nanostructure fabrication providing a
precise control over its size, shape, and spatial distribution. This makes it an excellent candidate
for constructing highly sensitive, reproducible, and low-cost platforms for surface enhanced Raman
scattering (SERS) spectroscopy. In this work, we connect the PS structural parameters with the
morphology of the gold nanostructures fabricated on its surface, placing the emphasis on the SERS
response. Two different types of PS are considered here, namely meso- and macro-PS. The former
is prepared by Si electrochemical etching, applying three different current densities: 100 mA cm−2,
60 mA cm−2, and 30 mA cm−2, while the technological parameters for the latter are selected to
mimic metal nanovoids’ (Me NVs) configuration. The gold-coated PS surfaces are produced via an
electroless chemical deposition method for different time periods. By performing comprehensive
structural, morphological, and optical characterization, we show the importance of the size and
density of the PS pore openings, which govern the Au growth kinetics. The results presented in
this work assure a simple yet flexible approach for the fabrication of large-area plasmonic gold
nanostructures, which are not only suitable for advanced SERS spectroscopy studies but can also
serve for a wider range of plasmonic applications.

Keywords: porous silicon; gold; fabrication; SERS; XRD

1. Introduction

Nowadays, the rapid development of biomedicine has been increasingly faced with a
demand for the detection, identification, and structural study of different organic analytes
in trace amounts. Several sensing techniques, such as X-ray crystallography [1], nuclear
magnetic resonance [2,3], and circular dichroism spectroscopy [4], have been applied to
meet these needs. However, their routine application outside the framework of laboratory
usage remains challenging: the low speed, high cost, complexity, and lack of complete
databases [5] are major limitations for their practical implementation.

On the other hand, vibrational spectroscopy is a well-established molecular characteri-
zation technique [6], which does not require complex sample preparation and is widely
used to study organic substances, e.g., in medicine [7], biology [8,9], the food industry [10],
and pharmaceutics [11–13], to name a few. Utilizing the latest advancements of the Surface
Enhanced Raman Scattering (SERS) spectroscopy technique, it is also possible to perform
the detailed structure assignment of intricate substances, such as peptides, in small con-
centrations [14]. This is because of the extremely high sensitivity of the SERS technique
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along with the ability to provide molecule fingerprints [15,16]. In addition, the analysis
procedure with SERS spectroscopy is currently straightforward, making it a solid candidate
for future sensing techniques in a wide range of applications.

The SERS effect is associated with a local electromagnetic field enhancement in the
vicinity of the metallic nanostructure as the result of the resonance light interaction with
localized surface plasmons (LSP) [17–19]. The magnitude of this enhancement is defined by
the material choice (usually one of the coinage metals), size, and shape of the nanostructure.
Hence, the research directed towards maximizing the local electromagnetic fields of a
nanoscale platform is of particular importance for SERS sensing. From a practical point
of view, however, such a platform must also demonstrate remarkable spot-to-spot and
sample-to-sample SERS signal reproducibility, preserve the stability of the signal intensity
over the long storage time, and offer inexpensive large-scale production [20]. In attempts
to meet these strict requirements, several types of SERS substrates have been already devel-
oped, including colloidal solutions of metallic nanoparticles [16,21] and solid-supported
arrays of metallic nanostructures with different shapes [22–25]. Although colloids usually
exhibit high enhancement factors [16,26], solid metallic nanostructures are more conve-
nient for utilization and demonstrate better signal reproducibility. Nevertheless, existing
commercially available solid SERS platforms are produced via multistage nanoengineering
processes, which inevitably increases their fabrication cost [27–31]. Therefore, exploring
other possible SERS platform fabrication strategies remains a crucial task for ensuring
broader SERS spectroscopy implementation in practice.

One such promising strategy is the utilization of matrices based on porous silicon
(PS) to create the metal nanostructures on their surfaces [32,33]. PS represents a net of the
periodically altered pore channels formed in Si. It has recently enabled an accurate control
over the morphology of deposited silver layers, leading to a considerable improvement in
SERS signal reproducibility [34,35]. The extraordinary detection limit down to the attomolar
concentration of lactoferrin protein adsorbed on silvered meso-PS covered with graphene
has been also demonstrated [9]. The macroporous PS on the other hand has facilitated the
formation of such sophisticated structures as nanothorns, nanospongy films, dendrites, and
many others [36–38], reaching the prominent 10−11–10−15 M detection limit range. Owing
to the PS capability to precisely control the nanostructures’ morphology, its utilization
for SERS has attracted extensive research during the past decade. The major advantages
and unveiled limitations of metal-coated PS SERS platforms have been comprehensively
discussed in several recent review articles [39,40].

Even though many studies have highlighted the effectiveness of PS-based SERS plat-
forms, most of them are associated with silver nanostructures, which display several critical
drawbacks, while utilizing SERS, especially when studying biomolecules. One familiar is-
sue that the LSP resonance band for the silver nanoparticles lies in the range of 370–500 nm,
depending on the size of the nanoparticles. Hence, to achieve the optimum resonance
conditions and thus the maximum SERS response, the LSP energy must closely match
with the excitation laser energy. Therefore, the usage of high-energy (small wavelength)
laser excitations is usually required in experiments. This excitation is destructive for the
majority of organic analytes. Moreover, considering that silver itself exhibits antibacterial
activity [41,42], the resulting SERS spectra intensities may be dramatically decreased. The
solution for these is relatively simple: silver can be replaced with gold, but this has rarely
been performed for the metalized PS platforms.

In this work, we therefore propose to replace the silver coverage with a more stable and
biocompatible gold layer to develop an effective SERS platform based on PS, and we also fill
the existing gap in the studies of gold deposition mechanisms on different types of PS.

2. Materials and Methods
2.1. PS Substrate Fabrication

The PS was fabricated by the electrochemical anodic etching of a monocrystalline
silicon wafer with (100) surface crystallographic orientation, according to the procedure
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described elsewhere [43]. Briefly, an n+- and p−-Si wafer was used to grow meso- and
macro-PS, respectively. Just before anodization, the native silicon dioxide was removed
from a silicon sample by etching in a diluted hydrofluoric acid (4.5%) for 60 s. After that,
the Si sample was placed in a horizontal electrolytic cell made of polytetrafluoroethylene.
An aqueous–alcoholic solution made of HF (45%), deionized water, and isopropanol at a
volume ratio of 1:3:1 was used to prepare the meso-PS. Dimethylsulfoxide (DMSO) mixed
with HF (45%) at the volume ratio of 10:46 was used for the macro-PS fabrication. The
prepared solutions were gently added to the electrolytic cell. The meso-PS samples were
fabricated at 100 mA cm−2, 60 mA cm−2, and 30 mA cm−2 current densities applied for 20 s,
22 s, and 20 s, respectively. The macro-PS samples were produced at an 8 mA cm−2 current
density applied for 4 min. All freshly prepared PS samples were rinsed with deionized
water and air dried.

2.2. Gold Deposition and Samples’ Characterization

Gold was deposited by the immersion of a PS sample in an aqueous solution of
0.01 M KAu(CN)2 and 0.15 M HF for different time periods according to the slightly
changed procedure reported before [44]. Subsequently, freshly prepared samples were
carefully washed with deionized water and air dried.

The organic dye rhodamine 6G (R6G) was used as an analyte for the SERS study. The
dye molecules were adsorbed on the gold-coated PS sample by dipping it in a 10−6 M
aqueous solution for 2 h. Each substrate was then thoroughly rinsed with deionized water
for 30 s to remove the excess analyte molecules.

The morphology of the gold-coated PS was studied by scanning electron microscopy
(SEM) with the help of an FESEM Hitachi−S4800 microscope. The crystallinity of the
samples was studied with X-ray diffraction (XRD) using Cu Kα radiation (X-ray wavelength
λ = 0.15406 nm). The SEM images were analyzed using ImageJ software. Reflectance spectra
measurements were performed in the 350–900 nm wavelength range with the help of a
Shimadzu UV-3600 equipped with an integrating sphere module (ISR-2200). SERS spectra
were acquired with the help of a WITec Scanning Near-field Optical Microscope alpha300 S
equipped with a 532 nm laser diode and an 60x air objective (0.9 NA). The spectra were
acquired with 1 mW laser power for 1 s sample surface exposition.

3. Results and Discussion
3.1. Morphology of the Au-Coated Meso-PS Substrates

The electroless (galvanic, corrosion) deposition of the Au films on monocrystalline
Si surfaces followed the oxidation–reduction (redox) mechanism, which assumes the re-
duction of Au3+ cations to atomic Au0 by electron (e–) exchange with Si. It is known
that the redox potential for Au3+/Au0 is positive in the presence of Si atoms [45]. Hence,
the Au deposition proceeded spontaneously as the result of the electron transfer from
semiconductor valence band to metal cations:

Au3+ + 3e− → Au0. (1)

As the result of this process, the Si was simultaneously oxidized, since the above
reduction reaction can be also viewed in terms of the holes (h+) “injection” into the valence
band of Si. This injection in the presence of H2O induced silicon dioxide formation:

Si + H2O + 4h+ → SiO2 + 4H+. (2)

On a large timescale, the gold deposition is limited by the passivation of the Si surface with
the oxide, reducing the process rate. However, with the presence of HF in the solution, the SiO2
can be dissolved, producing new charge carriers and water soluble SiF2–

6 species:

SiO2 + 6HF→ SiF2−
6 + 2H+ + 2H2O. (3)
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In these conditions, the Au electroless deposition on the Si is not limited by SiO2
growth, and new Au nuclei form on the already adsorbed metal clusters and the available
Si surface. Notably, the former is possible due to the galvanic cell formation between the
noble metals and Si [46].

Considering a porous instead of monocrystalline Si surface, an important role for Au
deposition is the presence of Si-Hx groups, which are usually generated via the hydration of
uncompensated Si bonds produced upon electrochemical Si etching. These hydrated bonds are
very reactive and can be easily oxidized, releasing additional electrons, and thus accelerating
Au deposition:

2Si–Hx(surface) + H2O→ SiO2(surface) + 2H+ + 4e−. (4)

Therefore, porous Si substrates can act not only as shape-forming platforms for plasmonic
nanostructures due to the diversity of their surface configurations (meso-, macro-, and microp-
orous surfaces of different porosity), but they also can control the redox reaction kinetics, which
is an intriguing approach for producing even more sophisticated nanostructures, such as noble
metal dendrites [47] or nanothorns [37].

Figure 1 shows the SEM images for the meso-PS templates prepared by different electro-
chemical etching regimes. Figure 1a reports a meso-PS etched at 30 mA cm−2 for 20 s, while
Figure 1b,c show samples etched at 60 mA cm−2 and 100 mA cm−2 for 22 s and 20 s, respectively.
Figure 1 confirms the PS formation with round pore openings of different sizes and densities. In
all cases, a 1.3 µm thick PS layer was produced.
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Figure 1. SEM images for a meso-PS sample after etching at a (a) 30 mA cm−2, (b) 60 mA cm−2, and
(c) 100 mA cm−2 current density. The top views are presented in the background, while the cross
sections are in the insets.

The quantitative characterization of the PS was carried out with the calculation of the
mean pore opening diameter, pore density, and porosity. The mean pore diameter was
calculated by averaging a Feret diameter distribution [48]. The pore density was calculated
by dividing the number of pore openings by the visible surface area. The porosity of the
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meso-PS samples was estimated by gravimetric [49] and SEM image assessment methods.
Both approaches resulted in the same porosities. When the applied etching current density
was 30 mA cm−2, we obtained an average pore diameter of 19 nm ± 8 nm, a pore density
of 5.3 × 1010 cm−2, and 49% porosity. For the sample etched at 60 mA cm−2, we obtained
an average pore diameter of 28 nm ± 14 nm, a pore density of 3.1 × 1010 cm−2, and 59%
porosity. For the highest etching current density of 100 mA cm−2, we obtained an average
pore diameter of 44 nm ± 32 nm, a pore density of 2.8 × 1010 cm−2, and 72% porosity.
These data are in good agreement with the well-studied mechanism of PS formation [50,51]
and reported experimental observations [52,53], albeit the density of the pores slightly
decreased for the more porous samples. Based on the obtained results, we can attribute the
fabricated samples to the mesoporous material [54].

The fabricated meso-PS matrices were utilized for the following gold deposition step.
Figure 2 represents the SEM images for different Au-coated meso-PS substrates. The
first row shows the samples obtained after 30 min of Au deposition, while the second
row represents the samples after 70 min of Au deposition. Each column in the figure
corresponds to the gold nanostructure on the meso-PS etched at different current densities:
30 mA cm−2, 60 mA cm−2, and 100 mA cm−2. The increase in the Au deposition time led
to the gold layer densification, producing a void-free continuous film along with a second
Au layer nucleation (observe the material excess on top of the formed layer in Figure 2a,d).
The same morphology evolution of a gold layer was obtained when the porosity of the
PS was reduced, while keeping the Au deposition time constant (Figure 2a–c). Notably,
no significant layer alteration was revealed when the porosity of PS varied at higher Au
deposition times (Figure 2d–f). The analysis of the SEM images indicated that the gold
coverage level increased from ~83% to ~97% after 30 min and 70 min of Au deposition,
respectively, and did not alter significantly for different PS matrixes. Although the produced
gold coverage represented a rather quasicontinuous film, there was still a meaningful
number of Au nanoparticles (NPs). Hence, we estimated their mean diameter and standard
deviation, which were varied within the 22–60 nm range for PS matrices after 30 min Au
deposition, while the 70 min Au deposition produced 31–46 nm NPs (Figure 3).

These results reveal the importance of the meso-PS matrix morphology for the accurate
control over the Au layer fabrication process. The obtained Au layer was defined by a
PS surface, which contained an array of densely packed voids on the silicon surface
(Figure 1a–c). Their density primarily depended on the etching current density and could
be characterized by the porosity of the PS. As a rule, the higher the porosity, the denser
the void package on the surface, and the lower the “free” silicon area. Consequently, the
gold deposition rate, which followed the redox reaction mechanism between the silicon
atoms and gold cations, was dramatically reduced for the highly porous matrices. The
number of seed nucleation centers, as well as the surface diffusion of the gold atoms, were
restricted by the voids, preventing the growth of a continuous Au film. Therefore, the Au
coverage appeared in the form of isolated islands, whose sizes strongly depended on the
porosity of the parent meso-PS matrix. It should be emphasized, however, that the situation
changed in the later stages of Au film growth (Figure 2d–f). In these stages, the produced
Au nanoislands became new nucleation centers, leading to the film growth over the pore
openings. Eventually, the Au nanoislands collapsed, and the quasicontinuous Au film on
top of the porous surface was achieved. Continuing the Au deposition induced the new
Au layer formation. Interestingly, the appearance of this layer started with NP nucleation,
suggesting that the Au film formation followed the Stranski–Krastanov mechanism of thin
films’ growth [55–57].
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Figure 4 reports the XRD pattern for the Au-coated meso-PS after 30 min and 70 min
of Au deposition on the PS etched at 60 mA cm−2. As can be seen from Figure 4, both XRD
patterns contained the characteristic peaks for the cubic cell Au crystals with orientations
(111), (200), (220), and (311), confirming the polycrystalline nature of the Au coverage.
Remarkably, the intensity of the (200) peak increased after 70 min of Au deposition, while
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the other peaks became less prominent, compare Figure 4a,b. These data indicate the
gold coverage growth along with the deformation of a Au elementary crystal cell by a Si
surface with (100) crystallographic orientation, leading to the monocrystallization of the
Au coverage. The appearance of the Si (400) peak, however, suggested a weak uniformity
of the Au layer for both samples. The same XRD patterns were observed for all the Au-
coated meso-PS samples, albeit with a minor intensity variation of the characteristic peaks,
depending on the porosity of the meso-PS and the Au deposition time.
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3.2. Morphology of the Au-Coated Macro-PS Substrates

Figure 5 reports the SEM images for the macro-PS template and the corresponding
distribution of the pore openings’ diameter. The SEM images confirmed the 1.1 µm thick PS
layer formation with round pore openings (Figure 5a). The pore diameters’ distribution for
the macro-PS was rather nonuniform, covering the 400–1000 nm range (Figure 5b). These
sizes were about one order of magnitude larger compared to the meso-PS (Figure 1). We
therefore attributed the obtained sample to the macroporous material [54]. These results
were in good agreement with the established macro-PS formation models [51].

Figure 6 shows the SEM images for the Au-coated macro-PS substrates after 30–80 min
of Au deposition. The morphology of the film altered dramatically at various Au depo-
sition steps. An array of closely packed Au NPs was obtained after 30 min deposition,
Figure 6a. These NPs coalesced after 40 min producing a quasicontinuous gold film, as
shown in Figure 6b. The subsequent increase in the deposition time led to the film densifi-
cation together with the new Au seeds’ nucleation over the formed coverage, producing a
multilayered Au film, as shown in Figure 6c–f. The analysis of the SEM images depicted
in Figure 7 reported the average Au NP diameter after different deposition times. No
noticeable dependence of NP size on the deposition time was observed. The average
Au NP diameter for all samples varied from 50 nm to 60 nm. The statistical data for the
samples after 30 min and 40 min of Au deposition is not reported due to the difficulties in
distinguishing individual Au NPs.
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The observed kinetics of the Au film growth may be explained considering the presence
of a thin microporous layer [58–60] over the entire macro-PS surface. This layer had a
fractal-like geometry, which acted as the main source of the charge carriers for the redox
reaction between the gold cations and the silicon wafer. This layer was also highly porous
and composed of dense tiny voids. The growth of a continuous Au film on such a surface
was even more confined by the voids compared with the meso-PS, leading to the formation
of a dense Au NP layer in an early deposition stage (Figure 6a). As the redox reaction
progressed with time, the thin microporous layer dissolved, leaving the bare macro-PS
surface opened. At this growth stage, the number of Au seed nucleation centers increased,
and the surface diffusion of gold atoms became possible. As the result, the Au NPs
coalesced, and the quasicontinuous film was produced. For the rest of the deposition time,
the gold layer grew similarly to the Au film on the meso-PS.

Figure 8 shows the XRD pattern for the Au-coated macro-PS after 50 min and 80 min
of Au deposition. The patterns reported peaks associated with (111), (200), (220), and (311)
Au crystal orientations, confirming the polycrystalline nature of the samples. Interestingly,
in contrast to the XRD patterns for the Au-coated meso-PS (Figure 4a,b), no characteristic Si
peak was observed in the XRD pattern for the gold-coated macro-PS, as shown in Figure 8a.
This confirmed the introduced mechanism of Au film growth, where the coverage became
uniform after the complete dissolution of the micro-PS layer. Apart from that, no noticeable
difference between the Au-coated meso- and macro-PS samples was observed from the
XRD; compare Figure 4a,b and Figure 8b.

We believe that the gold-coated macro-PS platform developed in this work can serve
as an efficient nanoscale platform for SERS due to the strong plasmonic enhancement of
the Raman signal. This can be better explained by closer inspection of the acquired SEM
images in Figures 5 and 6. These images suggest that the obtained samples repeated the
familiar nanoscale configuration, named metal nanovoids (NVs), which is one of the major
candidates for mass utilization in SERS [61,62]. These NVs usually represent 500–2000 nm
holes coated with various coinage metals and ensure the Raman signal enhancement by
at least two basic optical effects: a localized plasmon mode with a strong rim component
and multiple reflections of excitation light rays through the void. Moreover, the periodic
morphology of the Me NVs guarantees a good spot-to-spot reproducibility of the SERS
signal. The standard approach for Me NVs fabrication involves the deposition of a seed
metallic layer, the coating with polymer spheres, the electrodeposition of a metal, and
finally the dissolution of the polymer spheres. This procedure, however, is rather complex
and limited by the small surface area covered with Me NVs. In contrast, our approach
involved only two simple steps, electrochemical etching and chemical deposition, and can
be extended up to wafer scale. It should be emphasized that the porosity and the thickness
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of the macro-PS in this work were optimized to meet the dimensions of the standard Me
NV configurations, while the optimum Raman signal enhancement was determined by the
variation in the Au deposition time in the 30–80 min range.
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3.3. UV-Vis and SERS Measurements

Figure 9 depicts the reflectance spectra for the Au-coated meso-PS (Figure 9a) and
macro-PS (Figure 9b) samples. These spectra clearly depict the reflectance minima around
480–495 nm for all samples, which could be associated with the (localized) surface plasmon
resonance ((L)SPR). Considering that the highest Raman signal enhancement was achieved
upon this (L)SPR condition, we therefore utilized the closest to this resonance and available
for us laser wavelength of 532 nm. It should be emphasized that the (L)SPR observation
for gold in the blue region of visible light is rather uncommon. It is known that isolated
spherical Au nanoparticles demonstrate the LSPR band in the 520–580 nm wavelength
region [63]. In some cases, however, it can shift towards the blue part of the spectrum,
which is usually explained by the plasmons coupling between different nanoparticles upon
shortening their spacing distance [64]. Therefore, our nanostructures were most likely to be
affected by such a coupling effect, since they represented collections of densely packed Au
nanoparticles comprising quasicontinuous films.

Figures 10 and 11 show the SERS spectra for 10−6 M R6G adsorbed on either the
Au-coated meso- or macro-PS samples, respectively. To simplify the results represen-
tation and subsequent discussion, all the samples produced in this work and the cor-
responding fabrication regimes are summarized in Table 1. As can be seen from the
figures, all SERS spectra exhibited the same characteristic Raman bands for R6G, namely
613 cm–1 (C-C-C ring in-plane bending); 772 cm–1 (C-H out of plane bending); 1185 cm–1

(C-H in-plane bending); 1311 cm–1 (C-O-C stretch); 1363 cm–1, 1510 cm–1, 1575 cm–1, and
1650 cm–1 (aromatic C–C stretch). These results are in good agreement with the data re-
ported elsewhere [65]. Figure 10 indicates that the intensity of the R6G SERS spectrum
obtained for the best Au-coated macro-PS (sample 6) was two times higher than for the
best Au-coated meso-PS (sample 2′, Figure 9). This confirms the stronger Raman signal
enhancement provided by a configuration mimicking metal NVs compared with the usual
metal NPs. The variation in the SERS spectra intensity between different nanostructures
prepared on the same type of PS may be explained in terms of the stage of Au film growth.
For example, the weak intensity of the R6G SERS spectra corresponded to the samples
with a (quasi)continuous Au film (samples 2 and 5 in Figures 9 and 10, respectively; their
morphology is highlighted in Figures 2a and 6b, respectively), while stronger SERS signals
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originated from the Au NPs (samples 2′ and 6 in Figure 9, respectively; their morphology
is highlighted in Figures 2c and 6c, respectively). These results can be correlated with the
number of so-called “hot spots”, tiny gaps in a metal nanostructure where the localization
of a giant electromagnetic field occurred. The number of these spots was greater for the
nanostructures exhibiting nanoscale roughness compared with the smooth continuous sur-
faces, leading to a higher probability for a molecule to be located within it and contribute
to the enhancement of Raman scattering. With only this in mind, the reasons for the weak
SERS response for sample 4 (Figure 10) are rather unclear. One may expect comparable
intensities of R6G SERS spectra for both samples 4 and 6 because of the similar nanostruc-
ture morphology (compare Figure 6a,c). However, the correct results interpretation also
requires a particle size comparison. The calculated average particle diameter for sample 6
was 51 nm ± 30 nm, which was close to the optimum diameter of 60 nm for an isolated
Au NP, demonstrating the maximum SERS enhancement [66,67]. On the other hand, the
individual Au NPs for sample 4 could not be resolved from the SEM images, suggesting
their sizes were far smaller than the known optimum. A similar analysis can be conducted
for the other Au-coated samples prepared on the same type of PS matrixes. This means that
the careful choice of the initial PS morphological parameters, as well as the Au deposition
regimes, can help to obtain the optimum Au nanostructure with the corresponding NP size
and spacing for maximum SERS enhancement.
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Table 1. Fabrication regimes for the Au-coated meso- and macro-PS.

Sample Etching Current Density
for PS, mA cm−2 Etching Time for PS, s Au Deposition Time, min

1/1′ 30 20 30/70
2/2′ 60 22 30/70
3/3′ 100 20 30/70

4 8 240 30
5 8 240 40
6 8 240 50
7 8 240 60
8 8 240 70
9 8 240 80



Crystals 2022, 12, 1656 12 of 16

Crystals 2022, 12, x FOR PEER REVIEW 12 of 16 
 

 

the Au deposition regimes, can help to obtain the optimum Au nanostructure with the 
corresponding NP size and spacing for maximum SERS enhancement. 

 
Figure 10. SERS spectra for 10−6 M R6G on the gold-coated meso-PS substrates. 

 
Figure 11. SERS spectra for 10−6 M R6G on the gold-coated macro-PS substrates. 

  

Figure 10. SERS spectra for 10−6 M R6G on the gold-coated meso-PS substrates.

Crystals 2022, 12, x FOR PEER REVIEW 12 of 16 
 

 

the Au deposition regimes, can help to obtain the optimum Au nanostructure with the 
corresponding NP size and spacing for maximum SERS enhancement. 

 
Figure 10. SERS spectra for 10−6 M R6G on the gold-coated meso-PS substrates. 

 
Figure 11. SERS spectra for 10−6 M R6G on the gold-coated macro-PS substrates. 

  

Figure 11. SERS spectra for 10−6 M R6G on the gold-coated macro-PS substrates.

4. Conclusions

In summary, we demonstrated that an effective SERS platform may be fabricated
by Au electroless immersion deposition on meso- and macro-PS. SEM, XRD, and SERS
analyses were carried out for sample characterization. In this work, a macro-PS template
was fabricated to reproduce the Me NVs’ structure [61,62], while the meso-PS matrixes
were produced with three different porosities. SERS measurements were performed for
the R6G molecules adsorbed on different Au-coated meso- and macro-PS samples at a
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10−6 M concentration. It should be emphasized that the maximum SERS enhancement
was achieved for the Me NVs’ structures fabricated by a simple two-step procedure, while
the current Me NVs’ fabrication procedures involve at least four complex nanotechnology
techniques, and the final structure is limited by a low surface area. We also demonstrated
the correlation of the R6G SERS spectra intensity with the morphology and structural
properties of Au coverage on the PS surface. Notably, the SERS response from the Au-
coated PS samples may be tuned by the accurate choice of the initial PS morphological
parameters, as well as the Au deposition regimes, which is explained by the formation
of Au NPs with different sizes and spacings. Overall, both types of developed substrates
demonstrated a sufficiently strong SERS response and show great promise for simple and
versatile large-area plasmonic nanostructures fabrication.
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