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Abstract: Single-layer graphene decorated with monodisperse copper nanoparticles can support
the size and mass-dependent catalysis of the selective electrochemical reduction of CO2 to ethylene
(C2H4). In this study, various active adsorption sites of nanostructured Cu-decorated graphene have
been calculated by using density functional theory to provide insight into its catalytic activity toward
carbon dioxide electroreduction. Based on the results of our calculations, an enhanced adsorption of
the CO2 molecule and CH2 counterpart placed atop of Cu-decorated graphene compared to adsorp-
tion at pristine Cu metal surfaces was predicted. This approach explains experimental observations
for carbon-based catalysts that were found to be promising for the two-electron reduction reaction of
CO2 to CO and, further, to ethylene. Active adsorption sites that lead to a better catalytic activity
of Cu-decorated graphene, with respect to general copper catalysts, were identified. The atomic
configuration of the most selective CO2 toward the reduction reaction nanostructured catalyst is
suggested.

Keywords: graphene; nanodecoration; first-principles calculations; adsorption; CO2 electroreduction

1. Introduction

The electroreduction of CO2 from exhausts to hydrocarbons can provide a sustainable
supply of valuable raw materials for the chemical industry and fuels for transport and
energetics [1]. The reduction of captured excessive carbon dioxide from the atmosphere
could lead to a decrease in the greenhouse effect. CO2 can be reduced to hydrocarbons—in
particular, ethylene and methane (CH4)—by electrochemical reactions 2CO2 + 12e− + 8H2O
→ C2H4 + 12OH− and CO2 + 8e− + 6H2O → CH4 + 8OH−, respectively. Ethylene has
a wide range of applications in industry, polymer production, and agriculture. One of
the most promising catalysts that can electroreduce CO2 to C2H4 is copper metal [2,3].
However, along with ethylene (C2H4), many other carbon side-products are formed, includ-
ing methane (CH4), carbon monoxide (CO), and formate anion (HCOO−) [4–7]. Besides,
copper catalysts are very susceptible to poisoning and deactivation, usually, within half an
hour after the start of the reduction process of carbon dioxide [8,9]. For the aforementioned
reasons, significant efforts have recently been made to develop catalysts that can selectively
reduce CO2 to ethylene over long-lasting time periods. [7,10,11]. Polycrystalline Cu sur-
faces do not show a significant preference towards ethylene formation, with a C2H4/CH4
product ratio of around 1:2 [3–5,12,13]. Their insufficient selectivity is considered to be due
to the large heterogeneity of the centers of different catalytic activities on the polycrystalline
surface. This is confirmed by the study of the influence of different copper planes on the
selectivity of the electroreduction of carbon dioxide [7,14]. It was found that the (100)
surface of single crystals of Cu favors the formation of ethylene more than Cu (111), as
indicated by their ratios C2H4/CH4 1.3 and 0.2, respectively [7]. Interestingly, when the
high index Cu (711), Cu (911), and Cu (810) planes formed by cleaving Cu (100) were
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examined, an even higher selectivity was displayed toward C2H4, with the C2H4/CH4
ratio increasing to 10 for Cu (711). The reason for the catalyst’s selectivity toward certain
hydrocarbons is the increased number of surface steps in the high index facets or periodic
formation of Cu terraces. This means that the system that is modified in such a way may
exhibit an increased efficiency.

It was shown that copper nanoparticles with a large surface area have good selectivity
for the formation of hydrocarbons, especially of ethylene [6]. It has been suggested that
the edges and numerous steps formed on the surface of copper nanoparticles may be of
decisive importance for the selective formation of ethylene. In favor of this, quantum
chemical modeling has shown that intermediate reaction products, such as ∗CHO, are
more stable at the steps of the Cu (211) surface than at the Cu (100) terraces. (Hereafter, an
asterisk indicates that a species is adsorbed on a surface). This can lead to an increase in
their concentration, and, ultimately dimerization to C2H4 [15].

Composites and hybrid structures, as well as nanoobjects based on graphene, has at-
tracted huge attention in experimental and theoretical studies during the last decade [16–22]
after this material was discovered in 2004 by Novoselov and Geim [23]. The decoration
of graphene with metals (e.g., Fe [24], Pt [25,26], Pd [27]), as well as organic (e.g., tetracya-
noethylene [28]) and inorganic compounds (e.g., Bi2O3 [29]), could improve electrocatalytic
adsorption and gas sensing properties toward different gases

Different graphene-based catalysts for direct electrochemical CO2 reduction were
reported in the literature, e.g., atomic Fe dispersed on nitrogen-doped graphene [30], B-
doped graphene [31], N-doped graphene [32], defective graphene produced by a nitrogen
removal procedure from N-doped graphene [33], Ni-decorated graphene [34], Co3O4 spinel
nanocubes on N-doped graphene [35], etc. The review of graphene-based materials for
electrochemical CO2 reduction was published by Ma et al. recently [36]. Several recent
studies show that the modification of the graphene surface by copper nanoparticles or by
creating Cu-contained heterostructures is an interesting approach in the development of
efficient electrocatalysts [37–51] .

These preceding studies have led us to elaborate on a theoretical model for a stable
C2H4-selective electrocatalyst based on copper-nanocluster-decorated graphene and to
understand how this selectivity can be increased. Carbon-based materials are potentially
interesting catalysts for the CO2 reduction reaction due to their low cost and especially
due to their ability to form a wide range of hybrid nanostructures [52–57]. Carbon-based
catalysts are chemically inactive at negative bias potentials and provide high overpotentials
for the hydrogen evolution reaction compared to metal surfaces [58]. Pristine graphene does
not exhibit any catalytic activity. However, by introducing dopants [59–61] and defects [62]
during the synthesis, the electronic structure and catalytic properties of nanostructured
carbon materials [62] are tailored. In particular, N-doping has been shown to significantly
enhance the CO2 reduction activity [39,41,61,63–66].

Experimental results obtained recently [67] suggest that the reaction pathways of the
CH4 and C2H4 formation are separated at an early stage of CO reduction. Results from a
recent experimental study of CO electroreduction on single-crystal copper electrodes [68]
imply that there are two separate pathways for C2H4 formation: one (i) that shares an
intermediate with the pathway to CH4, and a second one (ii) that occurs mainly on Cu
(100) and probably involves the formation of a CO dimer as the key intermediate [69].
Considering the pathway (i), it is obvious that the ∗CH2 dimerization is a crucial step for
the final C2H4 production (the so-called “carbene” mechanism). ∗CH2 can be produced by
the protonation and deoxygenation of ∗CO [5]. ∗CH2 can be also obtained from subsequent
reductions of ∗HCO, ∗C, and ∗CH. The further reduction of a single ∗CH2 gives rise to
∗CH3 and finally to CH4.

In this study, the adsorption of CO2 is considered to typically be the rate-determining
step in the CO2 reduction reaction, and thus it is desirable to find/design catalyst sites that
bond CO2 strongly—preferably stronger than H adsorption [70]. To shed light on the trends
in the catalytic activity of the Cu-decorated pristine and N-doped graphene system, in this
work, systematic density functional theory (DFT) calculations of the adsorption of CO2 and
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intermediates on Cu-decorated graphene are performed. The first principle calculations
is performed for the monodisperse Cu7 nanocluster deposited at the 5 × 5 supercell of
graphene to predict the electronic properties of the Cu7 facet in light of its different affinities
for ∗CO2 and ∗CH2, and thus to provide deeper insights into its intrinsic activities for CO2
electroreduction. The reaction energies for the formation of intermediates on Cu7/graphene-
nanostructured surfaces have been calculated using the hybrid DFT approach. In general,
this work may not only give a deep insight into the reaction mechanisms toward C2H4
formation on Cu-decorated carbon nanomaterials, but may also provide guidelines for
designing Cu-based catalysts to effectively produce multicarbon compounds.

2. Computational Details

Modeling was carried out at the DFT level of theory. This approach is based on
the linear combination of atomic orbitals (LCAO) method with atom-centered localized
Gaussian-type functions (GTFs) forming the basis sets (BS). Fully relaxed Cu7/graphene
nanostructures were calculated using hybrid exchange-correlation functional HSE06 ac-
cording to the prescription given in Refs. [71,72]. Its particular feature is the use of an
error-function-screened Coulomb potential for calculating the exchange energy. This func-
tional was chosen to reproduce the basic atomic and electronic properties of both graphene
and the most stable Cu (111) qualitatively close to those experimentally observed. The cal-
culations were executed with CRYSTAL17 computational code [73], which was developed
for the atomistic modeling of solid state chemistry. Using such a computation strategy, the
geometries have been optimized with various species adsorbed on the graphene and metal
Cu catalyst, and the adsorption energies of various species that are considered in this study
have been calculated for nitrogen, oxygen, the CO2 molecule, and the CH2 radical. Besides
the graphene and copper catalyst, basis sets are required for atoms of adsorbed species. For
all atoms in the studied materials, full electron valence BSs [73] were used. For Cu, C, O,
and H atoms, the triple-zeta BSs were obtained from Ref. [74]; on the other side, for the N
atom, the basis set in the form of 6s-31sp-1d was obtained from Ref. [75].

To evaluate the Coulomb and exchange series appearing in the SCF equations for
periodic systems, five tolerances were controlled: 10−8, 10−8, 10−8, 10−8, 10−16 (related to
estimates of overlap or penetration for integrals of Gaussian functions on different centers,
which define cut-off limits for series summation). To provide the correct summation in
both direct and reciprocal lattices, the reciprocal space was integrated by sampling the
interface Brillouin zone (BZ) with the 8 × 8 × 1 Monkhorst–Pack meshes [76] for slab
calculations, which gives, in total, 34 k-points evenly distributed in the BZ. The calculations
are considered to be convergent if the total energy differs by 10−7 a.u. or less in two
successive cycles of the self-consistent-field (SCF) procedure [73].

The adsorption energy Eads was calculated with the following equation:

Eads = Eads/sub − Emolecule − Esub (1)

where Eads/sub and Esub are the total energy of the Cu7/graphene nanostructure with the
adsorbed CO2, molecule or ∗CH2 intermediate, and Cu7/graphene nanostructure slab,
respectively, and Emolecule is the total energy of the isolated CO2 molecule or ∗CH2 inter-
mediate, analogously to Ref. [77]. The energetically favorable adsorption (chemisorption)
takes place if the adsorption energy Eads is negative [78].

3. Results and Discussion
3.1. Cu/Graphene Cluster

Within the framework of this study, an efficient and reliable model of the monodisperse
Cu7 cluster deposited on single-layered graphene is constructed. The model consists of
a 5 × 5 graphene supercell periodically repeated in the xy plane, with seven Cu atoms
forming a nanodot deposited in every supercell. Such a model is a balanced solution for the
efficient use of computer resources and reliable prediction of the electronic structure and
energetics of the nanostructures under study. Figure 1 shows schematic views (aside and
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atop) for the fully optimized two-dimensional Cu7/graphene nanostructure containing the
faceted Cu nanodot. For this cluster, a complete relaxation of the atomic coordinates was
carried out and the binding energy of Cu atoms was estimated for this model.

(a)

(b)

Figure 1. Top (a) and aside (b) views of equilibrium structure of six-faceted Cu nanopyramid
deposited on graphene monolayer. Grey balls stand for carbon atoms and orange for copper.

The Cu7 cluster is quite strongly physisorbed to the graphene layer with the binding
energy of −1.54 eV/Cu atom. The negative binding energy means that energy is released
after the substrate–adsorbate coupling. Single Cu atoms tend to adsorb at the hollow sites
of graphene with the binding energy of −2.65 eV/Cu atom. Thus, Cu atoms deposited
at graphene could reproduce the facets of the most stable Cu (111) surface. Nevertheless,
a single Cu atom deposited at graphene forms quite weak Cu-C graphene bonds, with a
bond population of 80 milli electrons.

The strongest bonding between Cu and graphene takes place at the defective graphene
layer containing a carbon vacancy (Figure 2). The binding energy of the Cu-Cvacancy
complex is approximately −6.63 eV/Cu atom. However, the energy of vacancy formation
is quite high (17.5 eV) and such a mechanism of Cu cluster adsorption at graphene is
energetically unfavorable.

Figure 2. Equilibrium structure of Cgraphene atom substituted for Cu with the binding energy of
−3.59 eV/Cu atom. Grey balls stand for carbon atoms and orange for copper.

Since the N-doping has been shown to significantly enhance the CO2 reduction ac-
tivity of graphene [39,41,61,63–66], the six-faceted Cu nanopyramid deposited atop the
N-saturated graphene monolayer (Figure 3) is considered as well. The presence of the
nitrogen atoms at the graphene support allows for the strong chemisorption of the Cu atom
with the bond population of Cu–N = 303 milli electrons and N–Cgraphene = 344 milli elec-
trons. The presence of a nitrogen monolayer may lead to a stronger adsorption of the Cu
nanocluster at graphene; however, the presence of N practically does not influence CO2
adsorption at Cu7/graphene. Therefore, an N layer atop graphene is not considered in the
further modeling of CO2 reduction.



Crystals 2022, 12, 194 5 of 12

(a)

(b)

Figure 3. Schematic representation of top (a) and aside (b) views of six-faceted Cu nanopyramid
deposited on N-saturated graphene monolayer. Grey balls stand for carbon atoms, orange for copper,
red balls are oxygen atoms, and blue ones are nitrogen atoms.

Due to the relatively large distance between carbon layers in double-layered graphene
(∼6.94 Å), the layer-to-layer interaction is negligible and does not influence the Cu nan-
ocluster adhesion to the graphene layer. Therefore, in further modeling, it is assumed that
the Cu cluster deposited at single-layered graphene can mimic the Cu cluster deposited at
double-layered graphene.

Therefore, the constructed model of the six-faceted Cu nanopyramid deposited on
the graphene monolayer (Figure 1) is considered as the most appropriate for large-scale
ab initio total energy calculations of CO2 and CH2 molecules atop periodic Cu7/graphene
nanostructures (an electrically neutral system) using state-of-the-art total energy codes to
estimate the energetics of a chain of elemental reactions under the influence of the copper
nanocatalyst and graphene support.

3.2. CO2 Adsorption

Taking into account that the adsorption of CO2 is typically assumed to be the rate-
determining step in CO2 reduction, we pay major attention to the free energies of CO2
adsorption at the Cu7/graphene nanostructure, and, for comparative reasons, we have
modeled CO2 adsorption on its constituents, the most stable Cu (111) surface, represented
by a three-layer and six-layer slab and pristine graphene (Figure 4). For the slabs, we con-
sidered the non-symmetrical one-sided and symmetrical two-sided deposition of absorbed
CO2 molecules. The adsorption energies for the CO2 molecule and ∗CH2 intermediate for
the Cu7/graphene nanostructure, the Cu (111) surface, represented by the three-layer and
six-layer slab and pristine graphene, are given in Table 1.

Table 1. Calculated adsorption energies (eV) of CO2 molecule and ∗CH2 intermediate on
Cu7/graphene nanostructure, Cu (111) surface, represented as three-layer and six-layer slab, and
pristine graphene layer with 5× 5 supercell.

CO2
∗CH2

Cu7/graphene −6.04 −7.31
three-layer slab one-sided −6.69 −6.53

two-sided −6.74 −6.43
six-layer slab one-sided −6.99 −6.38

two-sided −6.89 −6.46
pristine graphene −0.43 −3.12
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(a)

(b)

(c)

Figure 4. Schematic representation of the most energetically favorable adsorption positions of
CO2 molecule on (a) Cu7/graphene nanostructure, (b) Cu (111) surface, and (c) pristine graphene
monolayer. Grey balls stand for carbon atoms, orange for copper, and red balls are oxygen.

For all materials under consideration, the most energetically favourable adsorption
site for the CO2 molecule is the bridge position. Only the weak physisorption of CO2 on
pristine graphene is predicted from our calculation, with a relatively small free adsorption
energy of −0.43 eV, which is in agreement with trends reported in Ref. [28]. The free
adsorption energy calculated for the Cu (111) surface is in the range between −6.69 and
−6.99 eV depending on the slab thickness and one-sided or two-sided adsorption of CO2
molecules, whereas the adsorption energy of −6.04 eV per CO2 molecule is predicted for
the Cu7/graphene nanostructure. A lower number points to a stronger chemical binding.
The stronger binding of CO2 to the Cu7 nanocluster at graphene (similar to the adsorption at
the pristine Cu (111) surface) can be explained by the presence of <111> grain boundaries
of the Cu7 nanocluster, which are known to be chemically more reactive. Figure 5a shows
the projected density of states (PDOS) calculated for the CO2 molecule adsorbed at the
Cu (111) surface. The strong adsorption of the CO2 molecule can be explained by Cu
3d–O 2p orbitals hybridization seen in Figure 5a by the peaks at approximately −4 eV. The
Cu–O bond population calculated by Mulliken population analysis is equal to 434 milli
electrons. Both O atoms of the CO2 molecule are strongly bonded to the Cu atoms of the
Cu (111) surface. The only weak physisorption of CO2 is predicted at graphene (PDOS in
Figure 5b), with a Cgraphene–CCO2 bond population of 0.012 milli electrons Our prediction
is in agreement with the recent experimental observations. According to the data available
in the literature, to improve the selectivity of CO2 electrochemical reduction in producing
C2 products, Kanan et al. synthesized Cu nanoparticles containing grain boundaries and
observed a substantial enhancement in the Faradaic efficiency of generating multi-carbon
hydrocarbons [79]. This enhancement is correlated with the density of the grain boundary
areas [80]. Cheng et al. conducted the atomistic modeling for the chemical vapor deposition
process of Cu nanoparticles and found that strong CO binding with under-coordinated
surface square sites could promote C–C coupling (“carbene” mechanism) [81]. According
to our predictions, the boundary between the Cu7 cluster and graphene can demonstrate
the best catalytic ability for the C2H4 formation. This is due to the adsorption properties
of neighboring Cu sites that are significantly perturbed by the presence of the nearest C,
and the stronger Cu–O bonding is formed on the catalyst surface, which can also enhance
H2C=CH2 evolution [14].
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Figure 5. Projected density of states (PDOS) calculated for (a) CO2 adsorbed at Cu (111) surface,
(b) CO2 adsorbed at graphene, (c) CH2 adsorbed at Cu (111) surface, and (d) CH2 adsorbed at
graphene. PDOS onto all orbitals of H, C, and O atoms are magnified 10 times.

3.3. CH2 Adsorption

Results from a recent experimental study of CO electroreduction on single-crystal
copper electrodes [5] further implied that one of the most probable pathways for C2H4
formation is one that shares an intermediate with the pathway to CH4. Considering that
pathway, it is reasonable that the ∗CH2 dimerization is a crucial step for the final C2H4
production (“carbene” mechanism). The further reduction of single ∗CH2 gives rise to
∗CH3 and finally to CH4. Therefore, in this study, the adsorption energy of ∗CH2 on
Cu7/graphene, pristine Cu (111), and pristine graphene (Figure 6) is calculated. For both
pristine Cu (111) and Cu7/graphene nanostructures, the most energetically favorable ad-
sorption site of ∗CH2 adsorbate is the hollow position between neighboring copper atoms,
whereas the bridge position between neighboring C–C atoms is the most energetically
preferable for the ∗CH2 adsorption on pristine graphene. Figures 5c,d show the PDOS
calculated for the CH2 component adsorbed on the Cu (111) surface and graphene, respec-
tively. CH2 relatively strongly adsorbed at Cu (111) with hybrydized Cu 3d–C 2p orbitals,
forming square planar sp2d hybridisation (Figure 5c, peaks at approximately −4 eV) and a
Cu–C bond population of 390 milli electrons, whereas the Cgraphene–CCH2 bond population
of 0.240 milli electrons is calculated for CH2 at graphene.

Only a weak physisorption of ∗CH2 on pristine graphene is predicted from our calcu-
lation, with a relatively small adsorption energy of −3.12 eV (PDOS in Figure 5d), which
is in qualitative agreement with the observation reported in Ref. [28]. This may conse-
quently lead to the relatively small barrier of CH2–CH2 dimerization. The adsorption
energy calculated for the Cu (111) surface is in the range between −6.38 and −6.53 eV
for the different thicknesses of slabs and the symmetrical/non-symmetrical deposition of
∗CH2 intermediates, whereas a free adsorption energy of −7.31 eV is predicted for the
Cu7/graphene nanostructure (Table 1). From the calculated adsorption energies, we predict
that the most energetically preferable CH2 dimerization can take place on pristine graphene,
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whereas only a small difference in CH2 dimerization can be predicted for the Cu (111) and
Cu7/graphene nanocluster.

(a)

(b)

(c)

Figure 6. Schematic representation of the most energetically favourable adsorption positions of
∗CH2 intermediate on the top of (a) Cu7/graphene nanostructure, (b) Cu (111) surface, and (c) pris-
tine graphene monolayer. Grey balls stand for carbon atoms, orange for copper, and white balls
are hydrogen.

4. Conclusions

The main goal of this study is to contribute to the description of experimentally
achievable results, allowing for the further optimization of the cathode composition and
structure. In order to give theoretical predictions, we have constructed an efficient and
reliable model that can be considered as the most appropriate for large-scale ab initio total
energy calculations of CO2 and CH2 elements atop periodic Cu7/graphene nanostructures.
In these calculations, in order to examine a chain of elemental reactions under the influence
of the copper nanocatalyst and graphene support, the state-of-the-art total energy codes
were used. In the modeled nanocluster, Cu atoms reproduce the facets of the most stable
Cu (111) surface. Adatoms and/or defects, e.g., vacancies, at the graphene support may
make Cu–C graphene bonds stronger, facilitating the growth of the nanocluster. Assuming
that the adsorption of CO2 is typically the rate-determining step in the CO2 reduction
reaction, the energies of CO2 adsorption at the Cu7/graphene nanostructure have been
calculated and compared to the adsorption energies of species placed on the pristine Cu
(111) surface and pristine graphene. The strong binding of CO2 to the Cu7 nanocluster
at graphene is close to binding to the pristine Cu (111) surface. This is explained by the
presence of <111> facets at the Cu7 nanocluster. This prediction is in agreement with
the recent experimental observations to improve the selectivity of CO2 electrochemical
reduction in producing the CH2–CH2 intermediates. Cu nanoparticles containing grain
boundaries were synthesized and a substantial enhancement in the Faradaic efficiency of
generating multi-carbon hydrocarbons was observed [79]. This enhancement is correlated
with the density of the grain boundary areas [80]. According to predictions obtained in
this study, the Cu cluster at graphene demonstrates the best catalytic ability for C2H4
formation. This is due to the fact that the adsorption properties of neighboring Cu sites are
significantly perturbed by the presence of the nearest C, and the stronger Cu–O bonding
is formed on the catalyst surface, which also can enhance H2C=CH2 evolution. Based on
this, it is predicted that the larger the length of the grain boundaries of the Cun nanocluster
deposited at graphene, the more selective the catalyst is to the C2H4. According to a recent
experimental study of CO2 electroreduction on copper electrodes [81], it is expected that
one of the most probable pathways for C2H4 formation is one that shares an intermediate
with the pathway to CH4. Considering this pathway, it is obvious that *CH2 dimerization is
a crucial step for the final C2H4 production (“carbene” mechanism). In this respect, the CH2–
CH2 dimerization reaction is responsible for the C2H4 evolution. The lowest dimerization
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barrier can be predicted for the pristine graphene due to the lowest adsorption energy,
meaning that the whole CO2 reduction reaction taking place at the grain boundary of the
Cun/graphene nanocluster may lead to an improved selectivity to ethylene.
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