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Abstract: Indium tin oxide thin films were deposited by magnetron sputtering on ceramic aluminum
nitride substrates and were annealed at temperatures of 500 ◦C and 600 ◦C. The structural, optical,
electrically conductive and gas-sensitive properties of indium tin oxide thin films were studied. The
possibility of developing sensors with low nominal resistance and relatively high sensitivity to gases
was shown. The resistance of indium tin oxide thin films annealed at 500 ◦C in pure dry air did
not exceed 350 Ohms and dropped by about 2 times when increasing the annealing temperature to
100 ◦C. Indium tin oxide thin films annealed at 500 ◦C were characterized by high sensitivity to gases.
The maximum responses to 2000 ppm hydrogen, 1000 ppm ammonia and 100 ppm nitrogen dioxide
for these films were 2.21 arbitrary units, 2.39 arbitrary units and 2.14 arbitrary units at operating
temperatures of 400 ◦C, 350 ◦C and 350 ◦C, respectively. These films were characterized by short
response and recovery times. The drift of indium tin oxide thin-film gas-sensitive characteristics
during cyclic exposure to reducing gases did not exceed 1%. A qualitative model of the sensory effect
is proposed.

Keywords: indium tin oxide; thin films; gas sensors

1. Introduction

The expansion of hydrogen energy and the deterioration of air quality near urban
infrastructure and industrial areas highlight the necessity to develop new gas sensors.
Resistive sensors based on metal oxide semiconductors are advisable to use for gas detection
in the air due to their high sensitivity, diminutiveness, low-cost fabrication and energy
efficiency [1–8]. However, the metal oxide semiconductor’s sensitive layer resistance
reaches tens or hundreds of MOhm and GOhm. This limits the use of standard power
components and processing elements and significantly increases the costs of devices based
on metal oxide semiconductor sensors and their energy consumption [9–13]. The nominal
resistance of Figaro commercial tin dioxide (SnO2) sensitive elements lies in the range from
1 kOhm to 10 kOhm when exposed to 100 ppm H2 or from 1 kOhm to 200 kOhm in pure
air. A low nominal resistance not higher than or within the specified ranges for commercial
sensors is necessary to achieve for developing a competitive device. Commercial SnO2-
sensitive elements are obtained by thick-film and ceramic technologies [14]. At the same
time, thin-film sensing elements are of significant interest, primarily due to the high
ratio between the surface area and the bulk of the semiconductor. This ratio allows the
enhancement of the effect of gas molecule chemisorption on the electrically conductive
properties of the material. The thin-film technology allows low-cost fabrication and the
possibility of combining it with standard microelectronic technologies [15–19].
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It is difficult to combine low nominal resistance and high sensitivity to gases for
thin films of metal oxide semiconductors. In general, the sensory effect of metal oxide
semiconductors consists of the interaction of gas molecules with previously chemisorbed
oxygen on the semiconductor surface. During their chemisorption on the metal oxide
semiconductor surface, oxygen molecules capture electrons from its conduction band.
This process leads to an increase in the resistance of the n-type semiconductor. During
chemisorption, molecules of reducing gases interact with previously chemisorbed oxygen.
The captured electrons return to the semiconductor during this process, and its resistance
decreases. The sensor response S is ~ exp(Ni

2/Nd) [20–22] at Dg >> LD, where Ni is the
surface density of chemisorbed oxygen; Nd is the concentration of donor impurities; Dg is
the semiconductor grain diameter; and LD is the Debye length. The Ni

2/Nd ratio can be
varied by adding bulk and surface impurities. In this case, the drift of sensor characteristics
increases at high operating temperatures [23]. The necessary Ni

2/Nd ratio providing high
gas sensitivity and electrical conductivity can be achieved by using a mixture of metal
oxide semiconductors [24]. The first metal oxide semiconductor provides high electrical
conductivity due to its fundamental properties, and the second provides high sensitivity to
gases due to its catalytic activity. Such a material is a mixture of indium oxide (In2O3) and
SnO2, with 5–15% of SnO2 corresponding to indium tin oxide (ITO) [25–31].

Pen plotter printing [25], impregnation [26], magnetron sputtering (MS) [27–30] and
plasma-chemical [31] methods have been used to obtain ITO thin films in order to study
their gas-sensitive properties. The thicknesses of ITO thin films ranged from 20 nm
to 600 nm. The sensitivity of ITO thin films to gases largely depended on the method of
their deposition. So, ITO films with 5–10 at.% Sn obtained by pen plotter printing showed
the highest responses to carbon monoxide (CO) at the operating temperature T = 200 ◦C by
impregnation and to hydrogen (H2) at T = 320 ◦C, and MS-deposited films were charac-
terized by high responses to ammonia (NH3) at T = 150 ◦C and nitrogen dioxide (NO2) at
T = 300 ◦C. The MS method allows variations in many parameters during the deposition
of films that affect their electrically conductive and gas-sensitive properties. An optimal
ratio between the nominal resistance of the film and its sensitivity to gases can be rela-
tively easily achieved by means of MS [27–30]. In Refs. [27,29], the responses to 100 ppm
NH3 and 1000 ppm H2 at T = 150 ◦C were 24.1 and 11, respectively, and the resistance in
pure air did not exceed 35.6 kOhm. In Ref. [31], the resistance in pure air in the range of
T = 100–500 ◦C varied in the range of 103–104 Ohm, and the maximum responses to H2 and
NO2 were 8 and ~160 at T = 400 ◦C and 300 ◦C, respectively.

Thus, MS-deposited ITO thin films are of interest for the development of highly sen-
sitive gas sensors with low nominal resistance. It is worth noting the lack of studies on
structures based on ITO with a resistance below 103 Ohms or on the order of several hun-
dred Ohms. This research is devoted to the study of the structural, electrically conductive
and gas-sensitive properties of MS-deposited ITO thin films with extremely low resistance.

2. Materials and Methods

ITO thin films were obtained by the direct-current MS of the oxide target in oxygen–
argon plasma using Edwards A-500 (Edwards, Sanborn, NY, USA) equipment. Polished
aluminum nitride (AlN) ceramic wafers with a thickness of 150 µm were used as sub-
strates. The wafers were treated in sulfuric acid, isopropyl alcohol and deionized water
before the deposition of ITO films. The substrate temperature corresponded to room tem-
perature in the process of ITO film deposition. The working pressure and power were
7 × 10−3 mbar and 70 W, respectively. The oxygen concentration in the oxygen + argon
mixture was 10 ± 0.5 vol.%. The distance between the substrate and the target was 70 mm.
The thickness of the ITO films was 180 nm for a deposition time of 20 min. The as-prepared
films were annealed for 60 min in the air at temperatures Tann = 500 ◦C and 600 ◦C. We
denote the series of ITO thin films annealed at Tann = 500 ◦C as ITO-500 and those annealed
at Tann = 600 ◦C as ITO-600.
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Pt plane-parallel contacts were deposited on the ITO thin film surface through a mask
to measure the electrically conductive and gas-sensitive properties. The interelectrode
distance was 150 µm. A photo of the sensor element produced by means of a metallographic
microscope Altami MET 6 C (Altami LLC, Saint Petersburg, Russia) is shown in Figure 1.
Before measuring the electrically conductive and gas-sensitive properties, the samples
were preliminarily heated at T = Tann − 50 ◦C in a stream of pure dry air to stabilize the
properties of the contacts, to regenerate the surface and to activate oxygen chemisorption.
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Figure 1. Microscopic photo of the sensor element based on ITO thin film.

The surface morphology of the ITO thin films was studied using an atomic force
microscope (AFM) (Solver HV from NT-MDT). Energy-dispersive X-ray (EDX) spectroscopy
of ITO films was carried out using a Phenom ProX scanning electron microscope (Thermo
Fisher Scientific, Shanghai, China) with special detectors at an accelerating voltage of 15 kV.
This EDX mode with an accelerating voltage of 15 kV is adequate for the study of ITO
films with a thickness of 180 nm [32–35]. X-ray diffraction analysis (XRD) was performed
to determine the phase composition of the thin films. XRD measurements were carried
out using a diffractometer (XRD 6000, Shimadzu, Tokyo, Japan) with CuKα radiation. The
X-ray source wavelength was 1.54 Å. Transmission spectra were measured for ITO thin
films deposited on a polished c-plane sapphire substrate with a thickness of 150 µm. A
DH-2000 irradiation source based on deuterium and tungsten halogen lamps and Ocean
Optics spectrometric systems were used to measure the transmission spectra of films at
room temperature.

Measurements of the current–voltage (I–V) characteristics and the time dependence of
the sample resistance under exposure to various gases were carried out using a Keithley
2636A source-meter and a hermetic Nextron MPS-CHH (Nextron) microprobe station. This
microprobe station allows the measurement of the electrically conductive characteristics
of films in the temperature range from room temperature to 750 ◦C with an accuracy of
T ± 0.1 ◦C. Measurements were carried out in dark conditions in a stream of pure dry air
or in a gas mixture of pure dry air + target gas. H2, NH3, CO, NO2 and methane (CH4)
were selected as target gases. The flow rate of gas mixtures through the measurement
chamber (100 cm3 in volume) of the microprobe station was maintained at 1000 cm3/min.
The source of pure dry air was a special generator. The concentration of the target gas in the
mixture was controlled by a gas mixture generator with Bronkhorst mass flow regulators.
The relative error of the gas flow rate did not exceed 1.5%. The voltage applied to the
sample electrodes was 2 V.
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3. Results
3.1. Structural Properties of ITO Thin Films

The microrelief of the ITO-500 film surface is represented by small grains with sizes of
40–100 nm, which form large agglomerates with sizes up to 350 nm (Figure 2). An increase
in Tann to 600 ◦C leads to an increase in the size of small grains to 80–140 nm. At the same
time, the sizes of agglomerates vary slightly.
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Figure 2. AFM images of the ITO thin-film surfaces annealed at Tann = 500 ◦C (a) and 600 ◦C (b).

The EDX spectra (Figure 3) show intense peaks of Al and N from the substrate and
In, Sn and O from the film deposited on top of the substrate. An increase in Tann leads to
an increase in the contents of In and Sn in the films due to a decrease in the content of O
(Table 1). In Ref. [36], it was shown that in as-deposited ITO thin films, Sn forms complexes
with O on the grain surface and intergrain space due to the excess of the latter. Annealing
leads to the destruction of these complexes and enhances the diffusion of Sn into In2O3.
The increase in grain sizes with Tann observed by AFM can lead to a decrease in the density
of Sn–O complexes on the film surface.
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Table 1. The content of elements in ITO thin films annealed at Tann = 500 and 600 ◦C.

Tann (◦C)
Element Content (wt.%)

In Sn O

500 55.26–56.93 4.10–5.15 38.82–39.72
600 58.54–60.65 4.97–6.15 34.13–36.12

The XRD spectra of the annealed ITO thin films are characterized by the presence
of low-intensity peaks that can be associated with the (211), (222), (100), (440) and (622)
crystallographic planes of the cubic In2O3 phase (Figure 4). The spectra were measured
at a shallow angle. For this reason, it was not possible to detect peaks from the substrate.
The content of SnO2 is not enough to detect its phase in ITO thin films using XRD. Similar
XRD spectra were observed earlier for ITO thin films [25,29–31]. An increase in Tann leads
to an increase in the intensity of the peaks without changing their position. The estimation
of the crystallite sizes D using the Scherrer equation was made for the most intense peaks
associated with the (222) and (100) crystallographic planes. For ITO-500 films, D = 22.6 nm
and 20.9 nm, respectively, for these peaks. An increase in Tann to 600 ◦C leads to an increase
in the D to 26.1 nm and 28.0 nm.
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The optical transmission spectra of ITO films annealed at Tann = 500 ◦C and 600 ◦C
are shown in Figure 5a. The transmission at wavelengths λ > 400 nm exceeds 80%, which
is characteristic of ITO films [37]. In this wavelength region, the annealing temperature
does not significantly affect the transmission values. The observed peak in the range of
λ = 450–475 nm is caused by interference phenomena in the film–substrate system. With a
decrease in λ from 400 nm to 320 nm, the transmission decreases due to the band-to-band
absorption. In this λ range, the transmittance of ITO films annealed at Tann = 600 ◦C is
slightly higher. Optical absorption spectra can be analyzed fairly accurately from the curves
of α2 vs. photon energy hν (Figure 5b) characterized for the direct-band-gap semiconductor,
where α is the absorption coefficient. The band gaps Eg were 3.62 eV and 3.65 eV for the
ITO-500 and ITO-600 films, respectively. The obtained values of Eg and those indicated in
Refs. [37,38] for MS-deposited ITO thin films are practically the same.

Thus, the studied films are a mixture of indium and tin oxides, with the content of
the latter at a level corresponding to ITO. It will be shown below that ITO thin films are of
interest for the development of low-resistance gas sensors. For this reason, in this work,
we have focused on the gas-sensitive properties of the material. In the future, we plan to
conduct detailed studies of the structural properties of ITO thin films by means of X-ray
photoelectron and Raman spectroscopies, just as was implemented in Refs. [39,40].
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Figure 5. Optical transmission spectra (a) and α2 versus the photon energy (b) for ITO thin films
annealed at Tann = 500 ◦C and 600 ◦C.

3.2. The Electrically Conductive Properties of ITO Thin Films in Pure Dry Air

Figure 6 shows the temperature dependence of the ITO thin-film resistance in pure
dry air, Rair. Rair decreases slightly with an increase in T in the range from 50 ◦C to 150 ◦C
regardless of Tann, which is characteristic of a semiconductor. Rair increases with a further
increase in T to 350–400 ◦C. The active chemisorption of oxygen on the thin-film surface
and the transition of chemisorbed oxygen from the molecular form O2

− to atomic O− take
place in this T range [20–22]. The atomic form of chemisorbed oxygen is the most active
in interacting with reducing gases. An increase in resistance with T is characteristic of
thin films. The surface determines the electrically conductive properties to a greater extent
than the bulk of thin films. During chemisorption, oxygen captures electrons from the
conduction band of a semiconductor [20–22]. Increasing T from 200 ◦C to 350–400 ◦C leads
to a rise in Ni and a drop in the electron concentration n in the film. At T > 350–400 ◦C,
the desorption of O− manifests, and Rair drops again with temperature. The observed
increase in Rair correlates with the results of Hall measurements for polycrystalline ITO thin
films [41]. Electron mobility decreases slightly with T due to ionized impurity scattering
and grain boundary scattering. The electron concentration in the T range from 25 ◦C to
200 ◦C does not significantly change and significantly decreases with an increase in T to
500 ◦C. The decrease in n is due to the interaction of the ITO film with oxygen.
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Figure 6. Temperature dependence of the ITO thin-film resistance in pure dry air at Tann = 500 ◦C
and 600 ◦C.
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An increase in Tann of ITO thin films leads to a decrease in Rair, mainly due to the
observed increase in grain size [42]. It was shown in Refs. [36,43] that an increase in
the grain size of ITO thin films with Tann leads to a decrease in film resistance due to
an increase in carrier mobility. Increasing the grain size of the studied ITO thin films
was confirmed by our results of ASM and XRD. The ITO thin-film resistance at different
temperatures does not exceed 350–400 Ohms. Thus, sensors based on the studied films
have low nominal resistance.

3.3. Gas-Sensitive Properties of ITO Thin Films

Figure 7 shows the dependence of the responses to fixed concentrations of various
gases on the temperature for ITO thin films annealed at Tann = 500 ◦C and 600 ◦C. Exposure
to the reducing gases H2, NH3, CO and CH4 in the temperature ranges of 150–450 ◦C and
150–550 ◦C for ITO-500 and ITO-600 thin films, respectively, leads to a reversible decrease
in their resistance. In the region of low temperatures, T ≤ 100 ◦C, the resistance of the
samples after their exposure to the gases is practically unrecovered. The following relation
was selected for the response to reducing gases:

S1 = Rair/Rg, (1)

where Rg is the ITO thin-film resistance in a gas mixture of pure dry air + target gas (H2,
NH3, CO and CH4). The exposure to NO2 leads to a reversible increase in ITO thin-film
resistance. The following relation was used for the response to NO2:

S2 = RNO2/Rair, (2)

where RNO2 is the ITO thin-film resistance in a gas mixture of pure dry air + NO2. The curves
in Figure 7 are characterized by the presence of maxima SMAX at a certain temperature,
TMAX. It is advisable to choose TMAX as the operating temperature. TMAX and SMAX for
various gases for ITO thin films annealed at Tann = 500 ◦C and 600 ◦C are presented in
Table 2, where ng is the target gas concentration. The highest responses to NH3 and NO2
are observed for ITO-500 thin films. An increase in Tann leads to a decrease in the responses
of ITO thin films to all gases except NH3. ITO thin films exhibit relatively low responses to
CH4. Table 2 also shows the resistance in pure air at T = TMAX. The observed variations in
Rair are due to variations in the tin concentration in the ITO thin films (Table 1).
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Figure 7. Temperature dependence of ITO thin-film responses to fixed concentrations of various
gases at Tann = 500 ◦C and 600 ◦C.
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Table 2. Values of the maximum response to various gases and temperatures of the maximum
response for ITO thin films annealed at Tann = 500 ◦C and 600 ◦C.

Gas ng (ppm)
ITO-500 ITO-600

TMAX (◦C) Rair (Ohm) SMAX (arb. un.) TMAX (◦C) Rair (Ohm) SMAX (arb. un.)

H2 2000 400 336.69 2.21 400 144.14 1.80
NH3 1000 350 259.87 2.39 350 210.01 2.40
CO 1000 400 370.14 1.91 350 154.17 1.46

NO2 100 350 337.55 2.14 350 62.40 1.68
CH4 1000 300 211.98 1.25 500 94.87 1.16

The time dependence of the ITO thin-film resistance at Tann = 500 ◦C and 600 ◦C under
exposure to various gases at T = TMAX is shown in Figure 8. The falling and rising regions
of the ITO thin-film resistance under exposure to reducing gases are approximated by the
following functions, respectively:

R(t) = Rg + A1exp[−t/τ1], (3)

R(t) = Rair − B2exp[−t/τ2], (4)

where A1 and B2 are constants; t is time; and τ1 and τ2 are time constants for the falling and
rising regions of the ITO thin-film resistance under exposure to reducing gases. The rising
region of ITO thin-film resistance under exposure to NO2 is approximated by the function:

R(t) = RNO2 − ANO2exp[−t/τ3], (5)

and the falling-region resistance after exposure to NO2 is approximated by the function:

R(t) = Rair + BNO2exp[−t/τ4], (6)

where ANO2 and BNO2 are constants; τ3 and τ4 are time constants for the rising and falling
regions of the ITO thin-film resistance under exposure to NO2.

τ1, τ3 and τ2, τ4 are defined by the relaxation times τ of the adsorption/desorption
processes of gas molecules on the semiconductor surface: τ ~ exp[(ED–EA)/(2kT)] [44],
where EA and ED are the activation energies of the adsorption and desorption of gas
molecules on the semiconductor surface, respectively; k is the Boltzmann constant. τ and,
consequently, τ1, τ3 and τ2, τ4 decrease sharply with T. It can be seen from Expressions
(3) and (4) that at t ≥ 2.3τ1 and t ≥ 2.3τ2, stationary values of Rg and Rair are achieved.
The response time tres = 2.3τ1 and the recovery time trec = 2.3τ2 can be used to evaluate
the operation speed of ITO thin films under exposure to reducing gases. tres = 2.3τ3 and
trec = 2.3τ4 under exposure to NO2. The temperature dependence of the response and
recovery times for ITO thin films is shown in Figures 9 and 10, respectively.

The response and recovery times drop exponentially with T. The response times of
ITO thin films for all reducing gases at T ≥ 350 ◦C do not exceed 20 s, and the recovery
times do not exceed 100 s. The longest tres and trec are observed under exposure to NO2,
which is caused by the large value of the binding energy of this molecule to the surface [45].

ITO thin films annealed at Tann = 500 ◦C are characterized by the highest responses to
H2, NH3, CO and NO2. Therefore, only these films will be further considered. Figure 11
shows the dependence of the responses on H2, NH3, CO and NO2 concentrations for
ITO-500 thin films at T = TMAX. The response increases with the concentration according to
the power law, S1,2 ~ ng

m, where m is the power index. The m values for H2, NH3, CO and
NO2 at T = TMAX are compared in Table 3.
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Figure 9. Temperature dependence of response times for ITO thin films annealed at Tann = 500 °C (a) 
and 600 °C (b) under exposure to various gases. 
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Figure 8. Time dependence of ITO thin-film resistance at Tann = 500 ◦C (a) and 600 ◦C (b) when
exposed to various gases and T = TMAX.
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Figure 9. Temperature dependence of response times for ITO thin films annealed at Tann = 500 °C (a) 
and 600 °C (b) under exposure to various gases. 

Table 3. Index m of ITO-500 thin films under exposure to various gases and at T = TMAX. 

Gas H2 NH3 CO NO2 
m 0.19 ± 0.01 0.21 ± 0.01 0.14 ± 0.01 0.72 ± 0.07 

Figure 9. Temperature dependence of response times for ITO thin films annealed at Tann = 500 ◦C
(a) and 600 ◦C (b) under exposure to various gases.
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Figure 11. Dependence of ITO-500 thin-film responses on concentrations of H2, NH3, CO and NO2 at
T = TMAX.

Table 3. Index m of ITO-500 thin films under exposure to various gases and at T = TMAX.

Gas H2 NH3 CO NO2

m 0.19 ± 0.01 0.21 ± 0.01 0.14 ± 0.01 0.72 ± 0.07

Figure 12 shows the time dependence of the resistance of ITO-500 thin films at
T = TMAX and under cyclic exposure to H2, NH3, CO and NO2. Estimates have shown
that the drift of ITO-500 thin-film characteristics is practically absent under exposure to
reducing gases. The deviations of Rair, Rg and S1 from the average values do not exceed
1%. Significant deviations of 5% occurred under exposure to NO2. The I–V characteristics
of ITO-500 films in pure dry air and when exposed to H2, NH3, CO and NO2 are linear in
the voltage range of −10–10 V (Figure 13). Exposure to gases leads to a change in the slope
of the I–V characteristics due to a change in the ITO thin-film resistance.
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Estimates have shown that LD for ITO-500 thin films increases from 0.57 nm to 1.1 nm
with an increase in T from 30 ◦C to 450 ◦C. Thus, the ratio Dg >> LD was obtained, and an
over-barrier conduction mechanism is manifested for ITO-500 thin films. In this case, the
conductivity G of the thin film is as follows [20–22]:

G(T) = G00(T)exp[eϕs(T)/(kT)], (7)

where G00 is a parameter that weakly depends on changes in the atmospheric composition
and is determined by the geometric dimensions of the ITO film and its electrophysical
characteristics; eϕs is the band-bending energy at the grain boundaries; ϕs is the surface
potential; and e is the electron charge. In an atmosphere of air, oxygen molecules are
chemisorbed on the surface of the semiconductor.

For an n-type semiconductor, oxygen chemisorption leads to the upward bending
of energy bands [20–22]. The predominant form of chemisorbed oxygen in the range of
T = 150–500 ◦C is O− [46]. For metal oxide semiconductors, eϕs ~ Ni

2 and eϕs ~ nO2
l,

where nO2 is the oxygen concentration in the gas mixture; l is an index that depends on
the adsorption properties of the semiconductor surface, adsorption centers, etc., with l < 1.
Under exposure to reducing gases, the interaction between their molecules and previously
chemisorbed O- ions takes place, leading to decreases in Ni and eϕs. NO2 molecules are
able to chemisorb onto free adsorption centers and, like oxygen, capture electrons from
the conduction band of the semiconductor. This process leads to an additional increase in
eϕs ~ (Ni + NNO2)2, where NNO2 is the surface density of chemisorbed NO2. Changes in G
when exposed to gases are caused mainly by changes in eϕs. Interactions between target gas
molecules and O− on the ITO surface can be described by the following reactions [47–49]:

H2 + O− → H2O + e, (8)

2NH3 + 3O− → N2 + 3H2O + 3e, (9)

CH4 + 4O− → CO2 + 2H2O + 4e, (10)

CO + O− → CO2 + e. (11)

NO2 + e− → NO2
−, (12)

As a result of Reactions (8)–(11), the conductivity of the semiconductor increases, and
reaction products in the form of H2O, N2 and CO2 molecules are desorbed. Reactions (8)–(12)
are the simplest possible and only fundamentally explain the observed sensory effect. Many
reasonable variants of other reactions on the surface of metal oxide semiconductors have
been proposed. Their consideration is not advisable to describe a qualitative model of the
sensory effect for the studied ITO films.

In Ref. [26], the sensory mechanism of the In2O3 and SnO2 mixed-oxide system was
studied in more detail. The tin oxide content in the mixture varied widely. It was found
that with an increase in the content of SnO2 from 0 to 10 wt.%, the conductivity of the
mixture increases, and the response to H2 decreases. This composition corresponds to the
studied ITO thin film. The limit of SnO2 solubility in In2O3 is 10–15 wt.%. The electrically
conductive and gas-sensitive properties of the In2O3 and SnO2 mixed-oxide system are
determined by In2O3 up to these values of SnO2 concentration. The introduction of Sn into
the In2O3 matrix leads to a decrease in the surface density of chemisorbed oxygen ions and
the responses of the films to H2. With a further increase in the concentration of SnO2, the
conductivity decreases, and the response to H2 increases. Thus, in our case, Sn (SnO2) acts
as an additive to In2O3 and reduces the resistance of the film. The sensing properties of the
studied ITO thin films are determined by In2O3.

Table 4 shows a comparison of the gas-sensitive characteristics of ITO thin films
with a SnO2 content of 5–10%. The resistance Rair and resistivity ρair of ITO thin films
in pure air were measured at room temperature. It is worth noting that for most ITO
thin films, high responses to gases corresponded to high nominal resistance. As a rule,
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high-sensitivity ITO films are characterized by a low thickness, less than 90 nm. High
responses were shown by ITO films with an island microstructure [28]. The diameter of
the ITO islands was several tens of nanometers. Depositing ultra-thin continuous and
homogeneous semiconductor films by means of the MS method is a difficult task due
to its peculiarities [50]. Nevertheless, reducing the film thickness is a promising method
for enhancing gas sensitivity. The resistance and response to gases of the ITO films are
significantly reduced at the high thickness of 300 nm [31]. The main advantage of the
studied ITO thin films is the possibility of developing sensors with low nominal resistance
(Rair) and relatively high sensitivity to gases (H2, NH3 and NO2).

Table 4. Comparison of the gas-sensitive characteristics of ITO thin films.

Rair (Ohm) ρair (Ohm × cm) T (◦C) ng (ppm) S (arb. un.) Refs.

H2

- 7.5 250 100 1.1 [25]

~104 - 150 1000 11 [29]

105–106 103 100 100 6 [28]

- 2.47 × 10−3 350 400 1.55–1.7 [31]

103 - 320 1100 25 [26]

200 3.6 × 10−6 400 2000 2.21 This work

NH3

- ~3 150 100 2 [25]

~104 150 1000 24 [29]

105–106 103 100 100 2 [28]

200 3.6 × 10−6 350 1000 2.39 This work

NO2

105–106 103 100 200 80 [28]

106 - 300 100 18 [49]

200 3.6 × 10−6 350 100 2.14 This work

4. Conclusions

The structural, optical, electrically conductive and gas-sensitive properties of magnetron-
sputtered ITO thin films on AlN ceramic substrates annealed in air for 60 min at temper-
atures of 500 ◦C and 600 ◦C were investigated. The microrelief of ITO films annealed at
500 ◦C was represented by grains with dimensions of 40–100 nm, which form agglomerates
up to 350 nm in size. The tin content in these films was 4.10–5.15 wt.%, and the band-gap
energy was 3.62 eV. An increase in the annealing temperature to 600 ◦C led to increases in
the size of grains to 80–140 nm, in the tin content to 4.97–6.15 wt.%, and in the band-gap
energy to 3.65 eV. In pure dry air, the ITO thin-film resistance annealed at 500 ◦C does not
exceed 350 Ohms, and the resistance of films annealed at 600 ◦C dropped by about 2 times.
Sensitivity to H2, NH3, CO, NO2 and CH4 was studied in the operating temperature ranges
of 150–450 ◦C and 150–550 ◦C for ITO films annealed at 500 ◦C and 600 ◦C, respectively. ITO
films annealed at 500 ◦C were characterized by higher sensitivity to gases. The maximum
responses to 2000 ppm H2, 1000 ppm NH3 and 100 ppm NO2 for these films were 2.21,
2.39 and 2.14 at operating temperatures of 400 ◦C, 350 ◦C and 350 ◦C, respectively. An
increase in the annealing temperature led to a decrease in the gas sensitivity of the films. At
operating temperatures of at least 350 ◦C, the films were characterized by short response
and recovery times that did not exceed 20 s and 100 s, respectively, under exposure to
reducing gases. The drift of the ITO film characteristics under cyclic exposure to reducing
gases did not exceed 1%. A qualitative model of the sensory effect was proposed. The
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gas sensitivity of the ITO films was determined mainly by In2O3. SnO2 acted only as an
additive, a source of Sn donor impurities. The possibility of developing sensors with low
nominal resistance and relatively high sensitivity to gases was shown.
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