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Abstract: This article presents an enhanced method for synthesizing β-SiC on a silicon substrate,
utilizing porous silicon as a buffer layer, followed by thermal carbide formation. This approach
ensured strong adhesion of the SiC film to the substrate, facilitating the creation of a hybrid hetero-
structure of SiC/por-Si/mono-Si. The surface morphology of the SiC film revealed islands measuring
2–6 µm in diameter, with detected micropores that were 70–80 nm in size. An XRD analysis confirmed
the presence of spectra from crystalline silicon and crystalline silicon carbide in cubic symmetry.
The observed shift in spectra to the low-frequency zone indicated the formation of nanostructures,
correlating with our SEM analysis results. These research outcomes present prospects for the further
utilization and optimization of β-SiC synthesis technology for electronic device development.

Keywords: silicon carbide; silicon; electrochemical etching; solar cells; carbonization; annealing;
heterostructures

1. Introduction

Silicon has long been the primary material for solar energy applications, largely
owing to its natural abundance and low toxicity [1,2]. However, recent studies have high-
lighted certain limitations in the energy conversion efficiency of silicon-based photovoltaic
cells [3,4], catalyzing the exploration of alternative semiconducting materials. In this vein,
semiconductors such as cadmium telluride (CdTe) [5,6], gallium arsenide (GaAs) [7,8],
indium phosphide (InP) [9,10], and complex ternary compounds like CdxTeyOz [11,12],
AlxGa1−xAs [13,14], and CuGaxIn1−xSe2 [15,16] have garnered significant attention. De-
spite the promising attributes of these materials, they are often compromised by high
production costs [17]. To ameliorate this, nanostructuring the surfaces of these semiconduc-
tors has been suggested as a method to enhance their light absorption coefficients [18–20].
Nonetheless, the scarcity of elements like indium and gallium restricts the large-scale
application of such materials to space-based solar cells [21,22], emphasizing the need for
efficient and cost-effective materials for terrestrial use.

Emerging as a viable option is silicon carbide (SiC), a material comprising silicon and
carbon, two of Earth’s most abundant elements [23–25]. The well-characterized semicon-
ductor properties of SiC make it conducive for industrial-scale utilization [26–35], akin
to silicon. In addition to its robust thermal conductivity, electric breakdown voltage, and
current density, SiC can operate over a broad temperature range without undergoing
degradation in its monocrystalline structure or phase transitions. Through doping, the
semiconductor properties of SiC can be tailored to yield both n-type and p-type mate-
rials [36,37]. These defects have been reported to impede the electrical and mechanical
properties of the material, as corroborated by extensive studies [38,39]. Such defects are not
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just distinctive to silicon carbide but are a recurring theme across the broader category of
semiconductors, each requiring its unique set of mitigative strategies.

Another formidable obstacle lies in the lattice mismatch when SiC films are grown
on non-lattice-matched substrates. The repercussions of this discrepancy are often the
formation of strain-induced defects that can severely compromise the crystalline quality of
SiC films, thereby limiting their applicability in electronic devices [40,41].

To ameliorate these complexities, prior research has established the efficacy of incorpo-
rating intermediate buffer layers as a palliative measure [42,43]. Notably, porous domains
or interstitial spaces generated on the semiconductor surface via electrochemical procedures
have been shown to serve as effective buffer layers, considerably reducing defect densities
and lattice mismatch-induced stresses [44–46]. Additionally, it has been demonstrated
repeatedly that the nanostructuring of silicon leads to a change in the properties of the
monocrystalline counterpart, allowing for a significant improvement in the characteristics
of solar cells fabricated based on it [47–49].

The present study introduces a cost-effective approach for synthesizing high-quality
β-SiC films on silicon substrates, utilizing a porous silicon (por-Si) intermediary buffer layer.

Using the electrochemical etching technique, the methodology begins by establishing
a porous layer on the monocrystalline silicon surface. This method possesses distinct
economic advantages such as reduced material wastage, lower energy consumption, and a
minimal requirement of specialized equipment. Furthermore, the electrochemical etching
process can be precisely controlled to produce uniform pores, thus reducing the need
for additional post-processing or treatments. Considering these benefits, electrochemical
etching can be up to 40–60% more cost-effective compared to other pore-formation methods.

The subsequent growth of SiC is facilitated by rapid thermal vacuum carbonization.
Including the buffer porous layer is pivotal for attaining a pristine silicon carbide film.

Regarding material safety, both silicon and silicon carbide stand out for their benign
nature. Silicon, a primary component of the Earth’s crust, is non-toxic and abundantly
available. Silicon carbide, similarly, is considered environmentally friendly and non-toxic
compared to other semiconductors that are frequently employed in solar cells, such as
cadmium telluride or copper indium gallium selenide, which have raised environmental
and health concerns. This inherent non-toxicity of the β-SiC/por-Si/mono-Si heterostructure
materials emphasizes their suitability for sustainable and eco-friendly solar cell applications.

Given the economic and environmental merits, the β-SiC/por-Si/mono-Si heterostruc-
ture demonstrates significant potential as an advanced and viable material for use in solar
cell applications. The novelty of our work lies in using a porous buffer layer, which not only
facilitates the growth of high-quality silicon carbide films but also enhances the adhesion
and structural integrity of the resulting heterostructure. Consequently, this new approach
reduces production costs and yields a high-quality heterostructure with excellent electronic
properties, making the β-SiC/por-Si/mono-Si heterostructure a promising material for
application in solar cells.

2. Materials and Methods
2.1. Samples for the Experiment

A monocrystalline Si of n-type conductivity was utilized for the experiment, doped
with phosphorus to a concentration of 1.8 × 1017 cm−1. Plates oriented as (111) with
dimensions of 1 × 2 × 0.2 cm were employed.

2.2. Electrolytes, Precursors, and Equipment

For the electrochemical modification of the silicon substrate, an initial step involved the
removal of the native oxide passivating layer. This procedure was accomplished through
electrochemical etching using a hydrochloric acid (HCl) solution. The experimental setup
included a standard three-electrode electrochemical cell. Within this configuration, a
platinum electrode served as the counter electrode, while a silver–silver chloride electrode
acted as the reference.
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To augment the efficiency of the etching process, the electrochemical cell was equipped
with two additional subsystems. Firstly, an air-blowing module was incorporated to
eliminate the formation of oxygen bubbles on the sample surface that could otherwise
hinder the etching process. Second, an electrolyte stirring mechanism was added to ensure
uniform electrolyte distribution and consistent etching across the substrate.

After removing the oxide layer, the next phase involved the formation of a porous
silicon layer. This was achieved through electrochemical etching in a hydrofluoric acid
(HF) solution within the same electrochemical cell. The electrolyte was maintained at room
temperature during this stage of the procedure. The etching was conducted under ambient
lighting conditions and did not require specialized environmental controls.

Post-etching, the samples underwent a drying process within a SNOL 58/350 muffle
furnace to remove any residual moisture and to prepare their surfaces for subsequent
procedures.

Finally, the silicon carbide layer was synthesized using a Jipelec JetFirst-100 oven. A
methane (CH4) gas precursor was deployed for this purpose, facilitating the formation of
Si-C bonds and thereby culminating in the growth of a high-quality SiC layer.

All chemicals utilized were procured from Spetsprompostach LLC. The hydrochloric
HCl and HF acids were of analytical grade (ARG, 99.8%), indicating a high purity level
suitable for analytical applications and ensuring minimal interference from impurities dur-
ing the electrochemical etching processes. The silicon (Si) substrate was of semiconductor
grade, a designation for materials with controlled and specified impurity levels to ensure
optimal electrical conductivity and functionality in semiconductor applications. Methane
(CH4), which was utilized to synthesize the silicon carbide layer, was of ultra-high purity
(UHP) grade with a purity level of 99.995%, ensuring the high-quality synthesis of the
SiC layer.

2.3. Experiment Steps

The experiment was conducted in several stages, specifically:

• Stage 1—Formation of the porous Si layer;
• Stage 2—Removal of reaction products from the sample surface;
• Stage 3—Formation of the SiC layer;
• Stage 4—Post-processing of the samples.

Detailed experimental stages are provided below.

2.3.1. Stage 1. Electrochemical Etching in Acid Solutions

The preliminary phase of the experimental procedure focused on the meticulous
preparation of the monocrystalline silicon (mono-Si) surface to render it amenable for
silicon carbide (SiC) layer formation. A point of concern in semiconductor processing is the
natural tendency of the silicon surface to oxidize following mechanical operations such as
grinding and polishing. This oxidation forms a thin, amorphous oxide layer documented to
expedite the device degradation rate and pose challenges in further fabrication steps [50,51].
Therefore, it is imperative to effectively remove this passivating oxide layer to preserve the
monocrystalline silicon substrate’s intrinsic properties and facilitate subsequent process
steps [52,53].

To further facilitate the quality of SiC films, a strategic approach involves formulating
a textured or porous silicon layer on the monocrystalline silicon surface. These specially
engineered buffer layers act as a soft substrate, addressing and alleviating the perennial
lattice mismatch between the SiC film and the mono-Si substrate. The resulting architec-
ture diminishes the manifestation of elastic stresses at the interface, thereby potentially
enhancing the SiC films’ overall quality and reprehensive understanding and repeatability.
The specific conditions under which this initial phase of the experiment was conducted are
systematically documented in Table 1, while the accompanying Figure 1 provides a visual
representation to aid interpretation.
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Table 1. Conditions and sub-stages of Si sample preparation.

№ Purpose Electrolyte Potential, V Time, min

1.1 Removal of oxide 5% HCl 2 3
1.2 Formation of a porous layer 50% HF 5 7

1.3 Removal of reaction
products from the surface H2O 0 2
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Figure 1. Schematic diagram of the formation of the Si porous layer.

A standard three-electrode cell ensemble was employed in the electrochemical etching
process utilized for both the removal of oxide and the formation of a porous layer on the
monocrystalline silicon substrate. In the initial sub-stage (1.1), a potential of 2V was applied
for 3 min in a 5% HCl solution to facilitate the removal of the oxide layer. Subsequently, in
the second sub-stage (1.2), the porous silicon layer was formed by applying a potential of
5V for 7 min in a 50% HF solution. This higher potential drove the electrochemical etching
of the silicon substrate, inducing porosity. The specific current during these processes
was not fixed but could fluctuate to maintain the set potential, ensuring that the desired
electrochemical reactions occurred. The final sub-stage (1.3) involved rinsing the silicon
substrate in water to remove any reaction products from the surface, setting the stage for
subsequent procedures. Through this systematic electrochemical etching process, the silicon
substrate was adequately prepared to synthesize the silicon carbide layer, addressing the
inherent challenges associated with the lattice mismatch and the passivating oxide layer.

2.3.2. Stage 2. Removal of Moisture Residues and Reaction Products from the
Sample Surface

The second stage of the experimental process was engineered to meticulously remove
moisture residues and byproducts from the treated surface of the porous silicon (por-Si)
sample. Such procedural steps are integral to ensure an uncontaminated substrate for
subsequent silicon carbide (SiC) film formation. To achieve this, samples were subjected to
a tightly controlled drying sequence in a SNOL 58/350 oven, characterized by three discrete
sub-stages delineated by specific durations and temperatures as outlined in Table 2.

Table 2. Conditions and sub-stages for removing moisture residues from the por-Si surface.

№ Time, min Temperature, ◦C

2.1 180 150
2.2 60 300
2.3 60 400

Table 2 comprehensively summarizes the conditions and sub-stages: starting with a
180-min treatment at 150 ◦C, followed by 60 min at 300 ◦C and then 400 ◦C. The judiciously
selected time and temperature parameters were optimized to remove any vestigial moisture
residues without adversely affecting the integrity of the por-Si substrate.
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Initiating the SiC film formation immediately after this stage was paramount to miti-
gate the potential of the sample oxidation processes post-drying. Thus, the transition to the
SiC film formation was executed without delay to maintain a contiguous processing flow.

2.3.3. Stage 3. Thermal Deposition and SiC Film Formation

Employing rapid thermal vacuum carbonization as our deposition technique, we used
methane (CH4) as the precursor material (Figure 2). The procedure was bifurcated into two
temporal series, each encapsulating a duration of 60 s and punctuated by a 2-min hiatus, a
design choice strategically deployed to allow for the chamber’s re-equilibration. As can be
seen in Table 3, the process underwent a rapid temperature ramp from an initial 50 ◦C to a
final state of 900 ◦C, conducted under a controlled vacuum pressure of 1 × 10−2 Pa.
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Figure 2. Schematic diagram of the formation of the heterostructure β-SiC/por-Si/mono-Si.

Table 3. Parameters for por-Si surface carbonization.

№ Time, min Temperature, ◦C Pressure in the Reaction Chamber, P, Pa

3.1 1 50→900 1 1 × 10−2

3.2 1 50→900 1 × 10−2

1 The notation (50→900) indicates that the temperature was gradually increased within the specified ranges.
The interval between processing batches was 1 min. These short carbonization batches ensure uniform carbon
distribution on the surface, which is essential for forming a high-quality thin silicon carbide layer.

The rapid thermal vacuum carbonization technique was chosen for its proven ability to
produce high-fidelity SiC films with minimized defect density, offering a potential solution
to inherent fabrication challenges. This process involves an instantaneous elevation in
temperature, designed to expedite deposition while suppressing the possible formation of
undesirable phases or defects. The constant pressure conditions in the reaction chamber
also serve as a critical parameter to inhibit unwanted chemical reactions, thereby promoting
stoichiometric fidelity in the resulting SiC films.

2.3.4. Stage 4. Post-Processing of the β-SiC/Por-Si/Mono-Si Heterostructure

For Stage 4, post-processing procedures were initiated to stabilize the formed β-
SiC/por-Si/mono-Si heterostructures. The post-processing primarily aimed to eliminate
weakly adhered atoms and extraneous byproducts of the deposition process. Table 4
outlines the conditions: firstly, chemical etching was applied using a 2% HCl solution for
20 min at ambient temperature to remove oxides and other residual compounds. Secondly,
thermal annealing was performed in a nitrogen atmosphere for 90 min at 150 ◦C to relieve
residual stresses and improve crystallinity.

Table 4. Parameters for post-processing the surface of the formedβ-SiC/por-Si/mono-Si heterostructure.

№ Method Reagent Time, min Temperature, ◦C

4.1 Chemical etching 2% HCl 20 20
4.2 Thermal annealing N2 90 150
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After completing the aforementioned stages, the samples were allowed to rest in an
open-air environment for 90 days. This time frame was sufficient for fully assessing the
samples’ long-term structural stability and integrity.

2.4. Characterization

The structural features of the SiC films were comprehensively analyzed using scanning
electron microscopy (SEM), carried out with an SEO-SEM Inspect S50-B microscope (Fei
Company, Hillsboro, OR, USA). X-ray diffraction methods were also employed, utilizing a
Dron–3M device with CuKα radiation (Sumy State University, Sumy, Ukraine). Energy dis-
persive spectroscopy (EDS) was executed to elucidate the elemental composition, facilitated
by an AZtecOne spectrometer (Oxford Instruments, Abingdon, UK).

3. Results
3.1. Subsection

As illustrated in Figure 3, the surface morphology of the β-SiC/por-Si/mono-Si
heterostructure is comprehensively explored. Remarkably, the heterostructure exhibits the
formation of distinct island-like agglomerates that collectively merge to form a densely
packed film. Within the context of the inset associated with Figure 3, a closer microscopic
observation reveals that each of these island agglomerates is interspersed with minute
pores, the dimensions of which have been carefully measured. These pores exhibit a size
distribution that falls within approximately 70 to 80 nm.
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Figure 3. Surface morphology of the β-SiC/por-Si/mono-Si heterostructure.

These pores are likely resultant artifacts from the chemical etching process conducted
on the silicon carbide film, specifically during the hydrochloric acid chemical treatment
stage (identified as step 4 in the post-processing sequence of the heterostructure fabrica-
tion). The interspersing channels separating these island agglomerates have dimensions
extending up to approximately 10 µm.

Figure 4 is devoted to a statistical investigation into the distribution of these islands
based on their respective diameters. The analytical quantification was executed utilizing
the robust analytical capabilities of the ImageJ 1.53q software product. According to the
compiled data, the islands exhibit diameters that are dispersed across a range extending
from 2 to 6 µm. Most notably, the statistical preponderance is observed for islands with a
diameter of approximately d ≈ 3 µm.
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Figure 4. Diameter distribution diagram of the SiC film islands.

Moving to Figure 5, a cross-sectional analysis of the synthesized β-SiC/por-Si/mono-
Si film is presented. The measured thickness of the film is precisely 2 µm. Upon microscopic
examination, the film manifests a conspicuous and highly uniform overlay upon the porous
silicon (por-Si) layer, devoid of any discernible imperfections such as pores, cracks, or other
types of morphological defects. Moreover, the top SiC layer appears to maintain a high
degree of homogeneity and compositional uniformity throughout the span of the film.
Importantly, the adhesion between the SiC film and the underlying por-Si substrate is noted
to be exceptionally robust, as evidenced by the absence of any zones that are indicative of
film separation or detachment from the substrate.
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3.2. EDX Analysis

As elucidated in Figure 6, a detailed compositional mapping of the surface of the SiC
film, as adhered to the por-Si/mono-Si substrate, has been conducted utilizing energy-
dispersive X-ray (EDX) analysis mapping technology. The results from this analytical
technique unambiguously reveal that the surface composition of the film is constituted
exclusively of silicon (Si) and carbon (C) atoms. Intriguingly, carbon is observed to be
uniformly and homogeneously distributed across the surface—a notable feature that sub-
stantiates the high quality of the film in question.
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mapping technology.

Further, the silicon concentration appears to be relatively higher than that of carbon
within the mapped region. This phenomenon is postulated to be the result of the scattering
or reflection of X-rays of the underlying por-Si/mono-Si substrate. Such a reflection phe-
nomenon is a strong indicator that the silicon carbide (SiC) film may be of a relatively thin
character, thus enabling the substrate’s features to influence the EDX compositional map.

Proceeding to Figure 7, an EDX spectroscopic analysis is performed on the surface of
the aforementioned β-SiC/por-Si/mono-Si heterostructure. The resulting spectrum provides
quantitative insights into the percentage compositions of the constituent elements. Again, it
becomes evident that silicon (Si) is present in a significantly higher concentration than carbon.
This observation is consistent with the aforementioned hypothesis regarding X-ray reflection
from the substrate layer, thereby reinforcing the idea that the SiC film may be relatively thin.
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Importantly, the EDX analysis did not detect the presence of any extraneous elements
on the surface, thereby confirming the purity of the material. Additionally, a key positive
outcome that should be highlighted is the absence of any surface oxidation. This is an
important metric for the quality of the film and underscores its potential for a wide range
of applications where surface purity is a critical parameter.

3.3. XRD Analysis

The X-ray diffraction (XRD) pattern of the fabricated β-SiC/por-Si/mono-Si heterostruc-
ture is presented in Figure 8. A close inspection reveals the presence of three prominent
peaks, whose angular positions (2θ) and corresponding crystallographic orientations (hkl) are
systematically tabulated in Table 5. The peaks correspond to crystalline structures of silicon
(Si) and silicon carbide (SiC) in its β-modification state. These spectral features can be mapped
to specific lattice planes, thus affirming the underlying crystallography.
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Table 5. Crystal structures determined by XRD spectrophotometry.

№ 2θ, ◦ hkl Crystal Crystal System

1 28.5 (111) Si Cubic
2 35.6 (111) Si Cubic
3 60.1 (220) SiC Cubic

Intriguingly, a noticeable peak shift toward the left-hand side of the diffractogram
is observed when compared to the standard peak positions for crystalline silicon. This
spectral shift can be rationalized by the quantum size effects that manifest in nanometer-
sized features within the material. More specifically, these nanometer-sized features are the
interstitial spaces between the pores in the silicon layer. These spaces are engineered into
the material by the etching process of the monocrystalline silicon substrate, a process that
was conducted as an initial step (Step 1) in the fabrication protocol.

Of particular interest is the intense peak located at an angular position of 2ϑ = 35.6◦,
which is characteristically representative of β-SiC crystallizing in a zinc-blende-type lat-
tice [54,55]. The prominence of this peak and the absence of other intense peaks corroborate
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the excellent crystallinity of the resultant SiC layers, suggesting that the synthesized het-
erostructure manifests high structural fidelity and integrity.

In summary, the XRD analysis offers compelling evidence of the high-quality crys-
talline nature of the obtained β-SiC/por-Si/mono-Si heterostructure. The observed spectral
features support the notion that the material is not only well-crystallized but that it also
possesses unique characteristics enabled by quantum size effects, underscoring its potential
utility in advanced applications.

4. Discussion

One of the formidable challenges encountered in the epitaxial growth of silicon carbide
(SiC) films on silicon (Si) substrates lies in the substantial presence of packing defects, as
corroborated by the existing literature [56,57]. Such defects can be particularly detrimental,
as they precipitate a breakdown under the application of high electric fields, thereby
undermining the functional integrity of the device. The etiology of these packing defects
can be primarily ascribed to the lattice mismatch between the SiC film and the silicon
substrate [58].

To offer a nuanced understanding of this phenomenon, Table 6 presents the lattice
parameters for both monocrystalline silicon and silicon carbide [59]. While both of these
semiconductors crystallize in the cubic crystal system, their lattice parameters and unit-cell
volumes exhibit pronounced disparities. These differences, although subtle, often translate
into significant mechanical stress during the growth of SiC films on monocrystalline silicon
substrates. The inherent tension culminates in defect formations and compromises the
film’s overall quality (as illustrated in Figure 9a).

Table 6. Structural parameters of Si and SiC.

Parameter Si SiC

Crystal system Cubic Cubic
Space group name P1 F-43m

Lattice parameters, Å a = 4.348 a = 5.6608
Unit-cell volume, 10−6 pm−3 82.20 181.39
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A promising approach to alleviate these issues involves creating a porous layer on
the silicon substrate, before SiC deposition. As depicted in Figure 9b, this porous layer
can serve as a mechanical buffer, effectively mitigating the excessive elastic pressures that
typically arise due to lattice mismatches. The porous architecture essentially functions as
a “soft” substrate, facilitating more harmonious integration of SiC with the underlying
silicon. Figure 10 represents the SiC film growth on mono-Si (Figure 10a) and por-Si
(Figure 10b) substrates. In Figure 10a, the progression from pure mono-Si to a rougher
β-SiC film signifies strain due to lattice mismatches. Conversely, in Figure 10b, the por-Si
begins with a structured porous surface, and as SiC deposition occurs, it shows a smoother
β-SiC film, underscoring the stress-buffering capacity of the porous architecture. This
improved consistency in Figure 10b illustrates enhanced film–substrate adhesion and
provides empirical support to the viability of the por-Si approach in addressing lattice
mismatch challenges.
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The lattice mismatch between SiC and Si serves as a fundamental bottleneck in achiev-
ing high-quality epitaxial films. However, incorporating a porous buffer layer presents a
feasible solution to this problem, as it allows for better stress distribution and enhanced
adhesion, ultimately forming superior-quality SiC films.

In conventional thermal methods for forming silicon carbide (SiC), carbon atoms are
chemically bonded to silicon atoms by forming Si-C covalent bonds [60,61]. However,
a challenge arises when considering the surface properties of monocrystalline silicon
(mono-Si), which inherently possesses a smooth topology. Due to the natural occurrence of
auto-passivation facilitated by silicon dioxide, monocrystalline silicon surfaces tend to have
minimal atoms with dangling or broken bonds [62]. Consequently, this surface morphology
impinges upon the efficacy of most traditional techniques for the epitaxial growth of SiC
films on mono-Si substrates.

The SiC films grown on such smooth mono-Si substrates are often fraught with many
imperfections, both on the surface and within the bulk material. These defects manifest in
various forms, including dislocations, stacking faults, and film cracking, as illustrated in
Figure 10a. The cracks compromise the mechanical and electronic properties of the material,
significantly limiting its application potential.

Contrastingly, when pre-formed on the mono-Si surface, a porous silicon (por-Si)
layer offers a more amenable substrate for SiC film growth. The surface of porous silicon
is characterized by a rough, textured morphology, depicted in Figure 10b. This textural
variation in por-Si is crucial: it engenders micro-protrusions or elevated zones interspersed
between the pores. These micro-protrusions act as localized sources of silicon atoms, which
can readily bond with incoming carbon atoms during SiC film formation.
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The intricate porous architecture thus plays a dual role; first, it provides a multitude of
nucleation sites that better facilitate the formation of Si-C bonds, and second, it introduces
a level of surface roughness that enhances the mechanical interlocking between the SiC
film and the underlying silicon substrate. The result is the formation of a high-quality
crystalline β-SiC film, which benefits from reduced defects and superior bond strength.

It is imperative to highlight that the properties and applications of porous silicon as a
substrate have been the subject of extensive academic investigations [63–65]. These studies
underscore the porous structure’s instrumental role in mitigating challenges associated with
SiC film growth on monocrystalline silicon, thereby contributing to improved SiC/mono-Si
heterostructures.

In summary, while the surface characteristics of monocrystalline silicon have tradition-
ally posed limitations on the growth of defect-free SiC films, introducing a porous silicon
layer offers an effective countermeasure. This adaptability can pave the way for developing
high-quality SiC films, an area of ongoing research and technological importance.

Many mechanisms have been elucidated in film formation on semiconductor sub-
strates to govern the deposited films’ growth kinetics and morphological evolution. Among
these, the paradigms established by Frank–van der Merwe [66,67], Volmer–Weber [68,69],
and the Stranski–Krastanov mechanism [70,71] stand out as seminal frameworks.

In the context of the Frank–van der Merwe mechanism, also known as layer-by-
layer growth, we observe a unique phenomenon primarily in systems where the film’s
and substrate’s crystalline lattice parameters exhibit minimal discrepancy [72,73]. This
leads to the formation of what is colloquially termed a “wetting layer,” characterized
by the sequential deposition of monatomic layers on the substrate. This mechanism
is typically operative when the thermodynamic factors favor minimizing surface and
interfacial energies.

Conversely, the Volmer–Weber mechanism is observed in instances with pronounced
lattice mismatch between the substrate and the film. Such discrepancies promote the
growth of isolated islands on the substrate, negating the formation of an initial wetting
layer. The Volmer–Weber mode is driven by the system’s need to minimize the strain energy,
which leads to a preferential aggregation of atoms into islands rather than a uniform film.

Situated as an intermediate regime between these two is the Stranski–Krastanov
mechanism. In this model, the early stages of the film growth process resemble the Frank–
van der Merwe mechanism, characterized by establishing an initial wetting layer [74].
However, owing to a slight lattice mismatch, elastic deformations begin to manifest. These
deformations induce compressive stresses in the film, ultimately resulting in the nucleation
and growth of three-dimensional, rounded islands atop the wetting layer.

Turning our attention to the growth of silicon carbide (SiC) on silicon (Si) substrates,
it becomes evident that the porous silicon (por-Si) layer significantly eases the challenges
associated with lattice mismatch, as depicted in Figure 9b. Our findings point to the
applicability of the Stranski–Krastanov mechanism in this particular heterostructure. This
observation substantiates the role of por-Si as a buffer layer, serving as an effective stress-
relief intermediary that accommodates the lattice discrepancies between SiC and Si.

Hence, we have presented a facile yet robust methodology for SiC film growth that
deftly addresses the perennial technological constraints of lattice mismatch and the com-
promised crystalline quality of SiC films. Introducing a por-Si buffer layer acts as a catalyst
in optimizing the epitaxial growth process of SiC on silicon substrates. The buffer layer’s
role is pivotal, warranting further exploration for future refinements in the growth method-
ology. Subsequent research endeavors may be directed towards achieving complete carbide
formation in SiC/Si structures and the potential for developing graphene layers on the
surface of these heterostructures.

Through this multi-faceted analysis, we aim to contribute to the empirical knowledge
pool of SiC film growth and broader efforts aimed at technological advancements in
semiconductor applications.
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5. Conclusions

The current study meticulously elaborates on an enhanced methodology for synthe-
sizing β-SiC films on silicon substrates by judiciously integrating porous silicon (por-Si)
as an intermediary buffer layer. Incorporating this buffer layer culminates in augmented
adhesion between the SiC film and the mono-Si substrate. The resultant layered material
thus manifests as a hybrid heterostructure of β-SiC/por-Si/mono-Si, with implications for
advancing the state of the art in semiconductor technologies.

Examinations of the surface morphology via advanced imaging techniques revealed
that the synthesized SiC film predominantly consists of island agglomerates with diametric
dimensions ranging from 2 to 6 µm. Further intricate features, such as minuscule pores
with sizes varying between 70 and 80 nm, were discerned on the islands’ surfaces. Such
topological attributes point to an intricate interface interaction and might have ramifications
on the mechanical and electronic properties of the resulting heterostructure.

The X-ray Diffraction (XRD) analysis of the synthesized β-SiC/por-Si/mono-Si het-
erostructure exhibited three distinct peaks at angular positions (2θ) of 28.5◦, 35.6◦, and
60.1◦. These peaks unequivocally correspond to the crystallographic orientations (hkl) of
(111) and (220) for silicon (Si) and silicon carbide (SiC) in their cubic symmetry, respectively.
This indicates the formation of high-quality crystalline structures. When juxtaposed with
the standard peak positions for crystalline silicon, a noticeable shift toward lower angles
was observed, particularly in the peak at 2θ = 35.6◦. This shift, which represents a deviation
from the typical diffraction patterns of bulk silicon, is indicative of quantum size effects.
Such effects are consistent with the presence of nanometer-sized objects, as confirmed by
Scanning Electron Microscopy (SEM) analyses.

Furthermore, the intensity and uniqueness of the peak at an angular position of
2θ = 35.6◦, which aligns with the characteristics of β-SiC in a zinc-blende-type lattice,
emphasize the impeccable crystallinity of the SiC layers. The absence of other intense
peaks serves as further evidence for this claim, suggesting that the resultant heterostructure
retains high structural integrity.

The prospects emerging from our research are expansive. The SiC/por-Si/mono-Si
heterostructure promises to revolutionize next-generation electronic devices, given the supe-
rior electron mobility and thermal resilience of SiC. In optoelectronics, the heterostructure’s
unique electronic and optical attributes could spearhead the development of advanced
devices such as photodetectors and light-emitting diodes. Furthermore, the chemical ro-
bustness of SiC offers avenues for its adoption in advanced sensing technologies, especially
in challenging environments. The juxtaposition of SiC’s admirable thermal conductivity
with por-Si’s insulating characteristics paves the path for innovative thermal management
solutions for electronic apparatuses. Additionally, the observed quantum size effects signal
potential applicability in the burgeoning arena of quantum computing, wherein meticulous
control over nanoscale entities is vital.

It is crucial to acknowledge that, while our methodology offers a substantial improve-
ment in overcoming lattice mismatch and adhesion issues that plague the conventional
SiC film synthesis on silicon substrates, further research endeavors are requisite. These
could include optimizing porosity levels in the buffer layer, a comprehensive assessment of
mechanical properties under variable thermal and electrical conditions, and investigating
the potential utility of this heterostructure in electronic and optoelectronic applications.

Conclusively, the present study augments the existing body of knowledge by elucidating
an efficient, scalable technique for synthesizing high-quality β-SiC films on silicon substrates.
The findings portend significant technological benefits and set the stage for subsequent
research to refine and expand the application scope of SiC/por-Si/mono-Si heterostructures.
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