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The article is devoted to the study of the mechanism of nanopore formation in the junc-
tions of polycrystal grains under the plastic deformation of a polycrystal due to the conserva-
tive sliding of lattice dislocations. A mechanism for the formation of a stress concentrator at 
the junction of the polycrystal grain boundaries is proposed. The possibility of relaxation of the 
stress state due to the formation of a junction nanopore is considered in the paper. 
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1. INTRODUCTION

Porous semiconductors have been 
attracting the attention of researchers for 
more than half a century [1], [2]. They are 
widely used as: materials for solar panels 
[3], [4], sensors [5], [6], supercapacitors 
[7], [8]. Recently, interest in such semi-
conductors has increased due to the pros-
pect of applying a porous layer as a buffer 
for growing thin films on a single-crystal 
substrate [9], [10]. Such a layer serves as 
a “soft cushion”, allowing to reduce the 

stresses resulting from the inconsistency of 
the crystal lattices [11]. Porous layers are 
grown on the surface of single-crystal sili-
con [12], [13]. Thus, it was shown that the 
electrochemical treatment of single-crystal 
silicon in a solution of hydrofluoric acid 
makes it possible to form an array of cylin-
drical mutually parallel pores [14]. Often, 
A3B5 group semiconductors (InP, GaAs, 
GaP) serve as the basis for creating nano-
porous layers [15]–[17]. The study [18] 
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presents a mechanism for the formation of 
domain pores on the surface of indium phos-
phide as a result of anode etching of a semi-
conductor. It is exhibited that the sliding of 
the pores can be caused by the crystal-lattice 
orientation of the surface. The authors of the 
work [19] have demonstrated the possibility 
of obtaining a developed porous morphol-
ogy on InP p-type by vapour-phase etching 
with two halogen acids (HF and HCl). As a 
result, it was found that halogen acid vapours 
(especially HCl) affect the thermal proper-
ties of the semiconductor. In the research 
[20], the correlations between the current 
density of the semiconductors anodizing 
and the morphological characteristics of the 
formed nanostructures were investigated. It 
was concluded that various semiconductors 
under the same conditions of electrochemi-
cal processing demonstrated different pore 
formation abilities. For the formation of 
such porous surfaces, as a rule, high-qual-
ity single-crystalline material is used [21], 
[22]. Among the most common methods for 
forming porous layers are electrochemical 
etching [23], photoelectrochemical etching 
[24], and photolithography [25]. All these 
methods are aimed at artificially creating 
pores in a homogeneous material [26]. Such 
modified surfaces and volumes acquire a 
number of non-standard properties distin-
guishing porous layers from their crystalline 
counterparts. First, there is a fundamental 
increase in the effective surface area, which 
can be successfully used in photovoltaics 
(PV) [27]. Secondly, there is a change in the 

indexes of reflection and absorption of light, 
which has found its application in photovol-
taic energy converters [28]. In addition, the 
fact of reducing the mass of the crystalline 
material is interesting and may contribute to 
the creation of lightweight crystals [29]. In 
addition to these features, it is also necessary 
to acknowledge the reduction of internal 
stresses of the material due to the release of 
dislocations through an open pore [30], [31]. 

Apart from the artificial introduction of 
pores into a crystalline material, a spontane-
ous pore formation may take place [32], [33]. 
In particular, pores can form at the junctions 
of polycrystal grains [34], [35]. This sphere 
of study is quite interesting from the point of 
view of using cheaper analogues of porous 
single crystals. It is commonly known that 
growing a single crystal with subsequent sur-
face modification is a very high-tech technol-
ogy requiring huge resources, modern equip-
ment and high costs [36]. Polycrystalline 
materials are much easier to grow [37]. To 
optimize the mechanical properties of alloys, 
grain size and texture are often manipulated 
by thermomechanical processing, including 
deformation and annealing [38]. The ques-
tion of the mechanisms of pore self-organi-
zation in the volume of such semiconduc-
tors, their concentration and size remains not 
fully resolved. The proposed study focuses 
on modelling the process of the appearance 
of the pores in places of stress concentra-
tion at the junctions of the polycrystal grain 
boundaries.

2. PROBLEM STATEMENT

The main feature of the polycrystal 
structure in comparison with single crystals 
and amorphous solids is the presence of two-
dimensional defects, namely, grain bound-
aries. Grain boundaries are the surfaces on 

which the differences in the orientation of 
the crystal planes of adjacent single-crystal 
grains of polycrystals are matched. In most 
polycrystalline structures, excluding “bam-
boo” polycrystals, grain boundaries intersect 
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to form triple junctions (TJs).  TJs are linear 
defects along which the differences of the 
grain boundaries are consistent.

This alignment occurs mainly due to 
local transformations or violations of the 
ideal crystal structure and the redistribu-
tion of such dynamic defects as vacancies 
and dislocations under the influence of vari-
ous external factors (temperature gradients, 
force fields, mechanical loads).

One of the most important consequences 
of the matching processes occurring at the 
grain boundaries and junctions is the forma-
tion of stress concentrators of various types. 
Among them, we can distinguish concentra-
tors of a diffusive, dislocation, and discli-
nation nature [39], [40]. A dislocation-type 
concentrator is a dislocation that takes place 
at the junction of grain boundaries. The junc-
tion dislocation is an analogue of the lattice 
dislocation, but it is considered not as a part 
of the crystal lattice of an individual grain, 
but in conditional (virtual) constructs: the 
lattice of grain boundary shifts, the com-
plete lattice of overlaps, and the lattice of 
coincident nodes of crystal grains forming 
the junction [41], [42]. Such concentrators 
play a defining role in the further evolu-
tion of the polycrystal, being responsible for 
local accommodation processes. In the junc-
tions of the grain boundaries, the processes 
of plastic deformation of polycrystals are 
coordinated. If it is impossible to relax the 
dislocation-type junction stress concentrator, 
the plastic deformation process slows down 
or undergoes qualitative changes. The relax-
ation of the junction concentrator can be car-
ried out due to local accommodation in the 
near-junction region of the polycrystal, or 
due to the pore formation. 

A dislocation-type concentrator, as a 
rule, occurs in junctions formed by special 
grain boundaries as a result of the interaction 
of dislocations entering the junction along 
the grain boundaries. 

Fig. 1. A model of a junction dislocation with the 
Burgers vector 1,2 1,3 3,2B B B B= + +

   
, formed as a 

result of matching grain boundary shifts 
1,2 1,3 3,2; ;B B B
  

 - Burgers vectors of grain boundary 
dislocations.

The operating conditions of polycrystal-
line materials imply the inevitable occur-
rence of internal stresses, both due to purely 
mechanical loading and as a result of the 
influence of temperature gradients and exter-
nal force fields. Let us consider the most 
basic case of mechanical loading, which, in 
general, does not limit the comprehensive-
ness of the result.

 If an external mechanical load is applied 
to a polycrystal, ensuring that the Peierls bar-
rier is overcome by lattice dislocations (LD), 
then a conservative movement (sliding) of 
dislocations becomes possible in the grain 
volume. Obviously, this sliding is limited by 
the volume of the grain itself and stops at its 
boundaries. 

Fig. 2. Formation of a cluster of parallel dislocations 
inhibited by the boundary of polycrystal grains in the 

sliding plane.
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The lattice dislocation slows down before 
the grain boundaries and stops moving. 
However, there might be several LD in this 
sliding plane meaning that there is a Frank-
Reed type dislocation source. It is a segment 
of the dislocation line, the ends of which are 
fixed to any obstacles to the conservative 
sliding of the dislocation, for example, inclu-
sions, complexes of point defects, a grid of 
dislocations, pores. Under the influence of an 
external force, the segment continues to slide 
conservatively, remaining fixed at the ends. 
As a result, dislocation loops are formed. 
The peculiarity of the Frank-Reed source is 
that it is not disposable – after the formation 
of a loop, it restores its original form and is 
triggered again. A cluster of identical dislo-
cations (with the same Burgers vectors and 
the same line directions) is formed in front 
of the grain boundaries (GB). These disloca-
tions repel each other in the sliding plane. In 
the equilibrium distribution (stationary posi-
tion) they are held by an external mechanical 
load. 

The parameters of the equilibrium dis-
tribution of dislocations in the continuum 
approximation depend on the Burgers vec-
tor of dislocations, the elastic modules 
of the sample, and are determined by the 
dependencies [44]:

0 1
( )

D
s χ

ρ χ
π χ

−
=

; 0

2BDl
s

=   ,                                 (1)

where ( )ρ χ  – the linear dislocation den-
sity ( )dρ χ χ  is the sum of the Burgers 
vectors of dislocations that fall on the linear 
differential spatial interval dχ ;

0s – a flat uniform field of mechanical 
stresses of external origin caused by an 
external force (displacement, compression, 
tension) applied to the outer surface of a 
polycrystal;

l – the length of the interval of arrangement 
of clusters of lattice dislocations;
χ – the distance from the grain boundary in 
the plane of conservative dislocation plane;
B – the sum of the Burgers vectors of all 
dislocations in the cluster;

2 (1 )
D µ

π ν
=

−
– an index implemented for 

the convenience of writing formulas;
μ – the displacement modulus of the sample 
material;
ν – Poisson’s ratio of the sample material.

In this case, before the dislocation, 
which has gone into the grain bound-
ary, mechanical stresses are concentrated 
according to the law: 

( ) 0
ls χ s
χ

= .                                         (2)

Given that the distance to the next dis-
location is equal to the width of the grain 
boundary χ δ= , and using (1) and (2), it 
becomes possible to estimate the stress con-
centration directly beyond the grain bound-
ary: 

( )
1
2

02 BDs δ s
δ

 =  
 

 ,                                (3)                                            

where δ – the width of the grain boundary. 

The displacement modulus µ, (respec-
tively, and the index D) far exceed the 
value of their own mechanical load ϭ0. The 
total Burgers vector of cluster B is at least 
equal to the width of the grain boundary δ. 
Accordingly, the stress concentration (3) 
will be sufficient for the dislocation shift to 
pass through the boundary into the adjacent 
grain. In this case, a dislocation of the ori-
entation mismatch (DOM) is formed at the 
grain boundary (Fig. 3).  
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Fig. 3. The scheme of the lattice dislocation passing 
through the grain boundary with the formation of an 

orientation mismatch dislocation. 

The Burgers vector is determined based 
on the condition of preserving the total 
Burgers vector in dislocation reactions:

                                          (4)

where 1b


– the Burgers vector of the LD in 
the first grain (before passing through the 
grain boundary);

2b


– the Burgers vector of the LD in the sec-
ond grain (after passing through the grain 
boundary);

b∆


– the Burgers vector at the dislocation of 
the orientation mismatch.

It can be concluded that the concentra-
tion of stresses from the accumulation of 
parallel lattice dislocations, inhibited by 
the boundary of adjacent grains in the slid-
ing plane, is able to ensure the propagation 
of the dislocation shift from one grain of a 
polycrystal to the adjacent one. In this case, 
the sliding planes of dislocations in adja-
cent grains should not be parallel. Matching 
the transition of the lattice dislocation from 
one sliding plane to another leads to the for-
mation of a grain-boundary dislocation of 
the orientation mismatch. 

3. MECHANISM OF PORE FORMATION IN THIN POLYCRYSTALS

Consider a situation where the structure 
of the grain boundary is ordered. Also, let us 
assume that the movement of the disloca-
tion of the orientation mismatch in the grain 
boundary plane occurs mainly due to sliding. 
The assumption seems reasonable due to 
the fact that the propagation of the disloca-
tion shift into the adjacent grain will prefer-
ably occur through such a grain boundary, 
where the rapid departure of the dislocation 
of the orientation mismatch from the place 

of agreement of the dislocation shifts will 
ensure a decrease in the stress concentration.

For a fine-grained polycrystal with a 
“parquet” structure, the grain boundary can 
be considered flat. Figure 4 allows determin-
ing the directions of the sliding planes in 
adjacent grains, which provide the possibil-
ity of conservative sliding of the dislocation 
of the orientation mismatch. In this case, the 
dislocation line and its Burgers vector lie in 
the grain boundary plane.

Fig. 4. Scheme for calculating the Burgers vector at dislocation of the orientation mismatch b∆


: 1n


– unit 
normal to the grain surface 1; 2n


– unit normal to the grain surface 2; α1 – the angle between the vectors 1b


and

1n


; α1 – the angle between the vectors 2b


and 2n


; β – the angle between the vectors 1b


and 2b


і.
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Respectively, in Fig. 4, the angle 
between the Burgers vectors of dislocations 

in the first and second grain is equal to: 

 (5)

where β – the angle between the vectors 1b


and 2b


;
1α  – the angle between the vectors 1b


 and the unit normal to the grain boundary 1;

2α  – the angle between the vectors 2b


and the unit normal to the grain boundary 2.

It should be taken into account that the 
normal has an external direction in relation 
to the grain volume. It also follows from 
Fig. 4 that the Burgers vector at dislocation 
of the orientation mismatch lies in the plane 

of the grain boundary if the angle between it 
and the Burgers vector LD of the first grain 
is equal to ( )12 aπ −  or ( )12 aπ + . This 
condition is met if:

1
1

1
1

2

cos( ) sin2cos( , )
sincos( )

2

b b

π α α
π αα

∧

 − ∆ = = − +


, (6)

                                                             

2 1 2 1

2 1 2 1

cos( ( )) cos( )
cos

cos( ( )) cos( )
π α α α α

β
π α α α α
− − = − −

=  − + = − +
, (7)                                            

1
2 2 2
1 2 1 2( 2 cos )b b b b b β∆ = + − . (8)                                                        

The obtained relations (9) are geometric 
criteria. When one of them is met, the dislo-
cation of the orientation mismatch line and 
its Burgers vector lie in the grain boundary 
plane. Such placement will provide the pos-
sibility of conservative sliding of the dis-
location of the orientation mismatch in the 
plane of the grain boundary.

A more detailed analysis of the condi-
tions (9) is quite complex. It requires a rig-
orous description of the crystal structure, 
along with the use of statistical and proba-
bilistic approaches. However, for a general 

understanding of the process of matching 
dislocation shifts in the grain boundary, it 
is sufficient for each specific set of values 
of the Burgers vectors and angles to check 
whether at least one of these equalities is 
true or not.  

As an example of the application of 
the obtained conditions, we can consider 
the simplest case when the modules of the 
Burgers vectors of both lattice dislocations 
and dislocation of the orientation mismatch 
coincide. This means that the triangle in 
Fig. 2 will be equilateral. Then, according 
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to (7), either the sum or the difference α1 
and α2 must be equal to 2π/3. 

Thus, if the dislocation reaction (4) sat-
isfies one of the equalities (9), a dislocation 
of the orientation mismatch is formed at the 
grain boundary, which is capable of conser-
vative movement along the grain boundary.

The dislocation reaction (4), the pas-
sage of the LD through the grain bound-
ary, and the formation of the dislocation of 
the orientation mismatch occur due to the 
concentration of stresses from the accumu-
lation of parallel LD, inhibited in the same 
sliding plane in front of the grain boundary. 
The source that supplies the dislocations for 
the cluster continues to operate. As a result, 
the level of stress concentration in the head 
of the cluster is restored. The dislocation 
that has passed the grain boundary moves 

away from it deeper into the volume, and 
the dislocation of the orientation mismatch 
moves away from the place of its formation 
along the grain boundary at their junction.

The dislocation reaction (4) is repeated 
periodically, and a “torch” of the LD is 
formed in the adjacent grain, which spreads 
from the grain boundary. Inside the grain 
boundary itself, a cluster of dislocation of 
the orientation mismatch is formed, the 
movement of which is limited by the triple 
junction (TJ) of the grain boundary.

The triple junction of the grain bound-
aries of polycrystals is formed as a result 
of the intersection of three-grain boundary 
planes along a specific linear defect - the TJ 
grain boundary channel. Schematically, the 
TJ is shown in Fig. 5.

    

                                                                  a)                                                b)

Fig. 5. Schematic representation of the triple junction of grain boundaries: a) a spatial view for the case of a 
“parquet” polycrystal; b) a top view; 12ϕ  13ϕ 23ϕ  angles between the grain boundary planes. 

When the conditions (8) are met, dislo-
cation of the orientation mismatch appears 
in the boundaries that form the junction. 
They can move conservatively along the 
grain boundary planes. When they reach the 
TJ, dislocation of the orientation mismatch 
interacts and forms a junction dislocation. 
This junction dislocation becomes a stress 
concentrator as the dislocation of the ori-
entation mismatch accumulates at the grain 
boundaries.

It is possible that the Burgers vectors do 
not correspond to the condition:

1 2 3 0b b b∆ + ∆ + ∆ = ,                                                       (9)

where 1b∆


2b∆


3b∆


 - the Burgers vectors 
of dislocation of the orientation mismatch 
are located in the boundaries 1, 2, 3, respec-
tively.

The vector condition (10) can be writ-
ten as two scalar conditions (Fig. 3b):
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1 2 12 3 13cos cos 0b b bϕ ϕ±∆ ± ∆ ± ∆ = ; 2 12 3 13sin ( sin ) 0b bϕ ϕ±∆ − ±∆ = .  (10)                   

The “+” sign before the module of the 
Burgers vector is selected if this vector 
is directed to the junction; the “–” sign is 
selected if the Burgers vector of dislocation 
of the orientation mismatch is directed from 
the junction.

Junctions that simultaneously meet 
the conditions (8) and (9) or (10) manifest 
themselves as effective dislocation of the 
orientation mismatch drains. Stress con-
centrators do not form in them. Junctions 
of this type could play a special role in the 
processes of plastic deformation of poly-
crystals, and a polycrystal with an increased 
density of junction drains for the disloca-
tion of the orientation mismatch should 
have plastic properties that differ from the 
average ones. However, in a natural poly-
crystal, the relative amount of dislocation of 
the orientation mismatch of junction drains 
will be negligible.

From the most general considerations, 
based on Newton’s third law, it can be 
understood that the maximum level of 

stress concentration in the junction concen-
trator cannot exceed the maximum level of 
concentration in the head of the disloca-
tion cluster, which is inhibited by the grain 
boundary. When the stress concentration 
levels in the junction and the head of the 
dislocation cluster are equalized, the pro-
cess of dislocation shift passing from grain 
to grain will stop. The resumption of this 
process will be possible only after the relax-
ation of the junction stress concentrator.

The relaxation of the junction concen-
trator can be carried out due to various 
mechanisms of local plastic deformation, 
such as: formation of “torches” of disloca-
tion loops, plastic rotations, local migra-
tion, etc. [45].

Let us consider the possibility of relax-
ation of the junction dislocation concentra-
tor due to the formation of a junction pore.

The components of the stress tensor 
caused by the junction dislocation concen-
trator for the case of a “parquet” polycrystal 
are defined as [44]:

sinBDρρ ϕϕ
ϕs s

ρ
= = −∆  ;

cosBDρϕ
ϕs

ρ
= ∆  ,                          (11)

where B∆  – Burgers vector of junction dislocation; 
2 (1 )

D µ
π ν

=
−

; μ – shift of material; 

ν – Poisson’s ratio of the substance; (ρ,φ) - polar coordinates with the pole at the grain junc-
tion.

The value B∆  it can be estimated using 
the condition of equality of the stress con-
centration in the head of the dislocation 

cluster at the grain boundary and the stress 
concentration in the junction concentrator 
using expressions (3) and (11). 

1
2

02BD BDs
δ δ

∆  ≈ ± 
 

;
 

1
202B B

D
s

δ ∆ ≈ ± 
 

.                                  (12)
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If we take l≈d, where d is the character-
istic grain size of a polycrystal (the case of 
a fine-grained crystal):

01
2

B d
D
s

= .                                           (13)

Substituting (12) in (13) we get:

( )
1

0 2B d
D
s

δ∆ ≈ ±  .                          (14)                                                        

Substituting (14) in (11) we get:
1
2

0
sin( )dρρ ϕϕ

ϕs s s δ
ρ

= ≈ ± ;

( )
1
20

cosdρϕ
ϕs s δ

ρ
≈ .  (15)                            

According to (16), a junction dislo-
cation with a positive Burgers vector ΔΒ 
(which corresponds to an excessive extra 
plane) causes mechanical compression 
stresses in the direction perpendicular to 
the grain boundaries. This leads to a nega-
tive oversaturation of vacancies in the local 
areas of grain boundaries near their TJ [46]:

0
0 exp nnc c

kT
s ω =  
 

,                                                (16)

where nn ik i kn ns s=  – the normal mechan-
ical stresses at the grain boundaries; iks – 
components of the stress tensor; ,i kn n  – 
the components of the vector of the exter-
nal normal to the surface; 0c  – the equilib-
rium concentration of vacancies in the grain 
boundary at the absolute temperature T ; k – 
the Boltzmann constant; ω0 – the vacancy 
volume.

In the approximation of small loads  
(σ0≪μ):

( )
1
20 0

0
sin( , ) 1

d
c c

kT
s δ ω ϕρ ϕ

ρ

 
 = − 
 
 

.  (17)                                   

The nonequilibrium distribution of the 
vacancy concentration will cause a diffuse 
outflow of the substance from the TJ chan-
nel:

3V I db
t

δ∆
= −

∆
,                                                (18)

where I – the flow of vacancies to the TJ; 
δ – grain boundary width; d – characteristic 
grain size of a polycrystal; b3 –volume of 
the atom; ΔV–   the volume of the substance 
removed from the TJ channel during the 
time Δt .

The vacancy flow I is calculated accord-
ing to the diffusion equation:

( )3MI D grad c= − , (19)

where DМЗ – the diffusion coefficient across 
the grain boundaries.

Estimating the gradient of the vacancy 
concentration as the difference between its 
values at a distance from the junction and 
near it, we obtain:

 (20)

Since the width of the grain, boundary δ 
is much smaller than the characteristic grain 
size d, and the vacancy size is close to the 
atomic volume 3b , the expression (20) can 
be written in a simplified form:  

 (21)

Thus, diffusive mass transfer across grain 
boundaries can provide the formation of a 
junction pore if it provides partial or complete 
relaxation of the junction concentrator.

Partial relaxation of the junction stress 
concentrator will occur if the energy associ-
ated with the pore is less than the energy of 
the dislocation concentrator.
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The energy of a dislocation concentra-
tor is the energy of its stress fields. It can 
be estimated by the expression (6), which 
takes into account the contribution of the 
energy of the dislocation core:

2 4ln
4 (1 )D

B dW d
B

µ
π ν
∆

=
− ∆

. (22)                                                                    

Given that 
2 (1 )

D µ
π ν

=
−

, we get:

1
2 20

0

( ) ln 4
2D
d D dW

D
δ s

s δ

 
  =     

 

.                      (23)

We will estimate the pore energy as 
a function of its radius. The pore energy 
consists of the elastic strain energy due to 
the pore and the surface energy of the pore 
itself.

The junction pore in the first approxi-
mation is a hole in the form of a round cyl-
inder, which leads to a geometric stress con-
centration in its vicinity. The corresponding 
components of the stress and strain tensors 
in solving the plane problem of the theory 
of elasticity (“parquet” polycrystal) in polar 
coordinates according to [44] have the form:

2 2 4

0 02 2 4
1 11 1 4 3 cos 2
2 2ρρ

α α αs s s ϕ
ρ ρ ρ

   
= − + − +      

   
,

2 4

0 02 4
1 11 1 3 cos 2
2 2ϕϕ

α αs s s ϕ
ρ ρ

   
= + − +      

   
,

2 4

0 2 4
1 1 2 3 sin 2
2ρϕ

α αs s ϕ
ρ ρ

 
= − + −  

 
,

where а – the radius of the pore.

To obtain the components of the strain 
tensor, we use the relation:

1 1 1
9 2 3ik ik ll ik ik llU

K
δ s s δ s

µ
 = + − 
 

, (24)

where К –  is the all-round compression 
modulus; μ is the displacement modulus;

1,
0,ik

i k
i k

δ
=

=  ≠

 

Using the relation between К and the 

Lame coefficients λ, μ, we simplify the 
expression (24)

1 2 5
2 9(1 )k ik ik llU νs δ s
µ ν
 −

= − + 
.  (25)                                                              

We will find lls :
2

0 0 22 cos 2ll
a

ρρ ϕϕs s s s s ϕ
ρ

= + = −

Then the components of the strain 
tensor ikU :

( )
( )
( )

2 2 4
0

2 2 4
4 7 41 5 1 3 cos 2

4 9 1 9 1
Uρρ

νs ν α α α ϕ
µ ν νρ ρ ρ

  +−
= − + − +   + +   

,



13

( )
( )
( )

2 2 4
0

2 2 4
4 2 51 5 1 3 cos 2

4 9 1 9 1
Uϕϕ

νs ν α α α ϕ
µ ν νρ ρ ρ

  +−
= + − − +   + +   

,

2 4
0

2 4
1 1 2 3 sin 2
4

U Uρϕ ϕρ
s α α ϕ
µ ρ ρ

 
= = − + −  

 
. (26)

The volume density of the free energy 
of a deformed body is defined as [44]:

2
ik ikuF s

= , (27)

Here, Einstein’s rule of addition over 
even indices is used.

Substituting (27) and (30) in (31) we get:

2 2 2 4
0

2 2 4
1 1 1 4 3 cos 2
8

aF s α α ϕ
µ ρ ρ ρ

  
= − + − + ⋅      

 (28)

To obtain the energy of the deformed 
state, it is necessary to calculate the integral:

2

0
( , )

d

a
W d F d d

π
ρ ϕ ρ ρ ϕ∫ ∫= . (29)

Accordingly, all the components of the 

expression for the free energy density F 
that have a multiplier of cos 2ϕ , or sin 2ϕ  
after integration by dϕ , in the range from 
0 to 2π are zeroed. Therefore, to calculate 
the energy, we can use a much-simplified 
expression instead: 

( )
( ) ( )

2 4 6 8
'' 0

4 6 8
2 7 41 55 43 12 9

4 9 1 9 1
F

νs ν α α α
µ ν ν ρ ρ ρ

 + +
= + − + 

+ +  
.       (30)

Taking a ≈ d, we simplify:

( ) ( )
2

2 20
1

7 4
2 9 1

W d d asπ ν
µ ν

+
= +

+
. (31)

The surface energy of the pore can be 
calculated as:

2W Sγ= , (32)

where γ – the surface energy density; S  – 
the free surface area of the junction pore

2S adπ= .

Accordingly, to [47] 0,1 bγ µ≈ . Then 
we get: 2 0,2W abdµπ≈

Thus, the excess energy of the polycrys-
tal associated with the occurrence of the 
junction pore is estimated as:

1 2ÏW W W= + ,

( )
2
0
2

7 40,2 1
3,6 1Ï

d d aW abd
b a d

s νµπ
νµ

 +  = + +  +    
. (33)
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Comparing (26) and (39), we obtain a 
criterion for the occurrence of a junction 
pore instead of a dislocation-type junc-

tion stress concentrator, as a condition for 
reducing the energy of the deformed state:

Ï ÄW W< ,

( )
( )

122 200
2

0

7 40,2 1 ln 4
3,6 1 2

dd d a D dabd
b a d D

δ ss νµπ
ν s δµ

  +     + + 〈     +         

,

given that
 ( )2 1
D µ

π ν
=

−
: 

( ) ( ) ( )

1
2 2 20 0
2 2

0

7 4 21 5 1 ln
3,6 1 1

d d a d da
b a d b

s sν µν δ
ν π ν s δµ µ

  +     + + 〈 −     + −        

. (34)

For the case of , the gap 
 
resulting from the relaxation of a disloca-
tion-type junction stress concentrator can-

not exceed a certain critical size, which, in 
the continuum approximation, corresponds 
to its geometric radius:

( ) ( )

12
20

0

25 1 ln
1êð

d da
b

s µν δ
µ π ν s δ

 
    = −     −      

. (35)                                  

The order of magnitude of the critical 
pore size is determined by the factor of the 
natural logarithm. Significant parameters 
for it are the size of the crystal grain of the 
polycrystal d, and the modulus of external 
mechanical stress s0. In general, the critical 
size exceeds the width of the grain bound-
ary by one or two orders of magnitude.

The results obtained evoke ideas about 
the significance of stress concentrators in 
general, and junction stress concentrators, 
in particular, for the processes of plastic 
deformation of polycrystals. The described 
mechanism of formation of a junction pore 
can be used both for determining the opti-

mal parameters for the use of polycrystal-
line samples and for designing polycrystal-
line materials and structures with specified 
properties. It should be noted that the appli-
cation of the obtained results is limited to 
the case of fine-grained polycrystals with a 
“parquet” structure. 

The prospects for further research sug-
gest an in-depth study of the energy criteria 
of the process of matching dislocation shifts 
in the grain boundary, clarification of the 
diffusion mechanism of the formation of the 
junction pore, and extension of the result to 
the case of a three-dimensional polycrystal.



15

4. CONCLUSIONS

1. The article describes the mechanism of 
nanopore formation at the junction of 
the grain boundaries of a polycrystal 
with a “parquet structure”. At the same 
time, the following stages of the com-
plete process are studied: formation of 
a cluster of parallel lattice dislocations 
inhibited in their sliding plane by the 
polycrystal grain boundary; passage 
of a dislocation shift through the grain 
boundary with the formation of a grain 
boundary dislocation of an orientation 
mismatch; coordination of grain bound-
ary shifts at the junction of polycrystal 
grains with the formation of a junction 
stress concentrator; relaxation of the 
stress state of the junction stress con-
centrator due to the formation of a junc-
tion nanopore.

2. A ratio is obtained that allows us to 
estimate the characteristic size of the 
nanopore depending on the characteris-
tic grain size of the polycrystal and the 
value of the external force load.

3. Modeling of the processes leading to 
the formation of a junction nanopore is 
carried out in the continuum approxi-
mation, which takes into account the 
variety of possible misorientation of 
adjacent polycrystal grains.

4. Understanding and detailing the mecha-
nism of the origin and formation of the 
junction pore will allow you to antici-
pate, eliminate, or implement this pos-
sibility in the processes, including 
technological ones, associated with the 
study and operation of polycrystals.
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