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Abstract: We propose a technique for the wafer-level testing of the gate dielectrics of metal–insulator–
semiconductor (MIS) devices by the high-field injection of electrons into the dielectric using a mode of
increasing injection current density up to a set level. This method provides the capability to control a
change in the charge state of the gate dielectric during all the testing. The proposed technique makes
it possible to assess the integrity of the thin dielectric and at the same time to control the charge effects
of its degradation. The method in particular can be used for manufacturing processes to control
integrated circuits (ICs) based on MIS structures. In the paper, we propose an advanced algorithm
of the Bounded J-Ramp testing of the gate dielectric and receive its approval when monitoring the
quality of the gate dielectrics of production-manufactured MIS devices. We found that the maximum
value of positive charge obtained when tested by the proposed method was a value close to that
obtained when the charge was injected into the dielectric under a constant current with a Bounded J
value despite large differences in the rate of degradation of the dielectric.

Keywords: MIS device; gate dielectric; wafer-level testing; high-field; electron injection; time depend
dielectric breakdown

1. Introduction

Currently, to assess the integrity of the thin dielectric, its defectiveness [1–7], and
improve the quality of the technological processes for manufacturing thin dielectrics of MIS
structures, methods of Time Depend Dielectric Breakdown (TDDB) are widely used [8–23].
The TDDB methods used for studying and monitoring the production process are regulated
by the JEDEC (Joint Electron Device Engineering Council) standards [3,8,14]. One of the
most informative methods, suggested by the JEDEC standards, is the Bounded J-Ramp
method, which involves increasing the high-field injection current to a specified value
(Jbound) and maintaining this value until sample breakdown. One of the main disadvantages
of this method is the difficulty in tracking the change in the state of the charge as the current
increases. Therefore, improving this method, aimed at expanding its functionality by
monitoring the charge effects in the gate dielectric, is an important task when studying the
degradation processes of an MIS device leading to its failure.

When implementing TDDB to control a change in the charge state of the gate dielectric
and its interface with silicon, the C–V technique is widely used [8–10]. However, the use
of the capacitance–voltage (C–V) method involves the re-switching of the samples, which
can lead to the relaxation of part of the charge accumulated in the gate dielectric in strong
fields and, in addition, to the presence of significant inaccuracy in estimating the charge
state of the dielectric [24].

The combined use of the TDDB and C–V methods significantly increases the test
time, which is highly undesirable when conducting the wafer-level gate dielectric testing
of MIS devices in production environments. Thus, the development of new methods
and improving the existing ones in order to expand their functionality and increase the
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information content while maintaining the control efficiency represent an important and
urgent task both from the point of view of monitoring the quality of the gate dielectric and
the quality of the gate dielectric production processes of MIS devices.

TDDB techniques are mainly aimed at monitoring the defectiveness of the dielectric
film, which correlates with external and internal defects [8–12,25,26]. The formation of ex-
ternal defects mainly correlates with the manufacturing quality (containments, mechanical
stresses, vacancies, etc.). The formation of internal defects is mainly determined by the
effects caused by the injection of electrons in a strong field and the thermalization of hot
electrons (capture of charge carriers by traps in the dielectric, generation of surface states,
generation of holes, hydrogen evolution, etc.) [8–11,27–30]. Supplementing the TDDB
results with information on the changes in the charge state of the gate dielectric of each
sample under study makes it possible not only to determine the quantitative indicators
of defectiveness but also to analyze the nature of the formation of defects and develop
algorithms for adjusting the technology for forming the gate dielectric to reduce the defec-
tiveness and increase the resistance to strong fields and radiation effects [8,16,17,31–33].

One of the main effects taking place under the TDDB and high-field influences/radiation
is a charge accumulation in the gate dielectric of an MIS device [34–41]. The accumulation
of charge results in an excessive shift in the threshold voltage and, as a consequence, in an
MIS device or IC failure [8–11]. Thus, the device failure, caused by the charge accumulation
in the gate dielectric, occurs much earlier than the dielectric film breakdown. Therefore,
the change control of the charge state of the gate dielectrics of MIS devices under TDDB
improves the manufacturing process of the formation of the gate dielectric, and, as a
consequence, increases the device resistance to high-field influences, radiation, and other
stress influences.

This paper describes a novel technique for the wafer-level testing of the gate dielectrics
of MIS devices by means of the high-field injection of electrons into the dielectrics in the
mode of increasing the injection current up to a set level. This technique provides the
capability to study the processes of charge state change that result in the failure of the
corresponding devices.

The rest of this paper is organized as follows. Section 2 presents the proposed tech-
nique of high-field electron injection to test the gate dielectrics of MIS devices. Section 3
describes the experimental sample description, the manufacturing process of the samples,
and the experimental equipment. Section 4 presents the experimental results and the
discussion of them. Finally, Section 5 consists of the conclusions.

2. Technique of High-Field Electron Injection into the Gate Dielectrics of MIS
Structures

For the Bounded J-Ramp at the initial stage, the density of the injection current
increases progressively by an exponential law over curtain time periods, which is the same
for the J-Ramp, until it reaches a set constant value Jbound. This value then remains constant
until the sample breakdown [13,15,18–20]. For the Bounded J-Ramp, a change in the charge
state of the gate dielectric can be evaluated by the time dependence of the voltage across
the MIS structure measured during the test. However, as the current density increases
progressively, the injection conditions and magnitude of the electric field are changed at
each stage. These changes greatly complicate the analysis of the time dependence of the
voltage and thus evaluating the charge characteristics of the gate dielectric being tested.

In order to eliminate this issue and enhance the functional capabilities of the Bounded
J-Ramp, this paper proposes an improved test methodology, the algorithm of which is
presented in Figure 1.
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Figure 1. Time dependence values of injection current flowing through the studied MIS structure:
1, 2, 3, 4, 5, 6. . . n—stages corresponding to flow of stress injection current; 0 m, 1 m, 2 m, 3 m,. . .
km—stages corresponding to flow of measurement injection current.

Figure 1 demonstrates that, for the suggested method, the stress by increasing the
current is implemented at stages 1, 2, 3, 4, 5, 6. . . n. At the same time, at n stage, the stress
is implemented with a constant current amplitude of Jbound. For the proposed method,
at the densities of the injection current at which a change in the charge state of the MIS
structure takes place, e.g., Figure 1, stage 4 (this stage is defined by preliminary studies),
before the switch to the next step, a short-time switch to injection by the measurement
current amplitude Jm is implemented (stages 1 m, 2 m, 3 m. . .km).

We set the voltage amplitude V0m at stage 3 in Figure 1 as the reference value
and, regarding it, we evaluate a change in the voltage across the MIS structure after
each step of stress by monitoring the voltage at the subsequent measurement stages
(V1m,V2m,V3m. . .Vkm). As a result, we have a shift in the voltage characterizing a change
in the charge state of the gate dielectric after each step of current stress influence.

An important difference in the proposed technique in comparison with the regular
Bounded J-Ramp is the ability to control a change in the charge state of the gate dielectric
when implementing TDDB [13,14]. In comparison with our previously discussed methods
based on Bounded J-Ramp [13,14], the paper proposes a novel algorithm of injection
current control, which is presented in Figure 1. The use of this algorithm minimizes the
quantity of the measurement stages, thus simplifying the test procedure. As a result, the
proposed technique could be easily integrated into the manufacturing process to test the
gate dielectrics of MIS devices.

Monitoring a change in the charge state of the gate dielectric during the whole test
provides the capability to analyze the main physical processes causing the degradation and
subsequent breakdown of the gate dielectric.

3. Experimental Samples and Equipment

In order to control defectiveness and study the irreversible degradation processes
taking place in the gate dielectric, we use MIS capacitors manufactured in situ with a
production batch of MIS devices. This manufacturing process is used to form many discrete
MIS transistors and digital ICs of MC74HC series. The MIS capacitors were fabricated on
n-type silicon wafers with resistivity of 4.5 Ω·cm and crystal orientation of <100>. The
gate dielectric is a silicon dioxide with thickness of 60 nm fabricated by thermal oxidation
of silicon in dry oxygen at temperature of 1000 ◦C mixed with 3% HCl. Then, the wafers
are annealed in nitrogen at temperature of 1000 ◦C. For the gates, we use polysilicon (Si*)
films, doped with phosphorus up to 20/square, with thickness of 0.6 µm with 10−2 cm2

area [15,19].
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In order to implement the suggested method, we design a test setup based on precise
generator/meter of current/voltage PXIe-4135, which is a PXI module from National
Instruments. The control application to realize the proposed test algorithm and to monitor
the parameters is coded using NI LabVIEW [15–20]. We conduct the studies at positive
polarity of the stress, applied to the MIS structure gate, and this enables the electron
injection from the silicon wafer and the creation of accumulation mode at semiconductor
surface area [15,17,18]. To evaluate a change in the charge state of MIS structure, we also
use high-frequency C–V curves.

4. Experimental Results and Discussion

When applying the suggested method to study the charge degradation processes of
the gate dielectric, the chosen value of current density Jbound has great significance. Figure 2
shows the experimental results demonstrating a change in the charge state of the MIS
structures under different densities of the constant injection current. The constant current
stress (CCS) technique was used to study in detail the effects of changing the charge state
of the gate dielectric at different injection current densities. The CCS was used in order to
properly choose the Jbound value. A change in the voltage across the MIS structure under
high-field electron injection from silicon when in a mode of constant current maintenance
characterizes a change in the charge state of the gate dielectric [8,15,17,23,24,42,43]. Figure 2
shows the experimental data for samples with maximum values of charge injected until
the breakdown. The gate dielectric breakdown for these samples is caused by presence of
internal defects, the evaluation of which under high-field injection results in the gradual for-
mation of a conductive channel in the gate dielectric and its subsequent breakdown [8–11].
Figure 2a demonstrates that, at the initial stage of injection, the accumulation of a positive
charge is the main effect causing the degradation of the gate dielectric. The value of the
positive charge has field dependence and, consequently, increases with the increase in the
density of the injection current (Figure 2). At values of the injected charge in a range of
1–3 mC/cm2, we can observe a saturation of the positive charge density. Simultaneously,
the accumulation of the negative charge in the gate dielectric becomes the main process
characterizing the charge degradation of the dielectric.

The accumulation of a negative charge is correlated with the capture of electrons
in the bulk of the gate dielectric on the initially existent and newly generated electron
traps [8,27–30]. This effect corresponds to a positive voltage increase across the MIS
structure (Figure 2a,b). Obtained from Figure 2, the experimental results are in good
qualitative agreement with the results of other researchers that were obtained for similar
MIS structures [27,30,42,43].

We have determined that, in the gate dielectric, the density of the fast surface states at
the Si/SiO2 interface has begun to increase ten times simultaneously with the generation of
the positive charge. In the spectrum of the density of fast surface states, as for [8,27–30],
there are two peaks in the bottom and middle parts of bandgap. The main differences in
the charge degradation of the gate dielectric at different densities of injection current are
the rate of capture and saturation density of the positive charge accumulated in the SiO2
film. We found that, with an increasing value of the positive charge, a decrease in the mean
value of the charge injected until the breakdown occurs. This result is in good agreement
with the breakdown model suggested in [8,29,43]. According to that model, all across the
MIS capacitor, there are a few “weak spots”, which are capable of capturing an abnormally
high amount of the positive charge. At that rate, the areas of “weak spots” to the overall
capacitor area is 10−7–10−6 [8]. Because the accumulation of a positive charge results in
lowering the potential barrier value at the injecting interface, the presence of “weak spots”
could lead to a large increase in the local injection currents. Thus, these currents generate
a higher positive charge. As a result, in the area of the “weak spot”, positive feedback is
created, which leads to structure breakdown [8,43].
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Thus, at low densities of injection current, the rate of generation of the positive charge
is relatively low and only the presence of a “rough defect” at the Si/SiO2 interface or in the
SiO2 film could result in early structure breakdown. With the increase in the density of the
injection current, increased defects could cause a local increase in the current density, which
leads to the breakdown. Hence, at increased current density, the amount of structures for
which the breakdown at low values of injected charge is observed rises. This result could
be explained in accordance with the breakdown model suggested in [8,29,43].

According to this model, the injection degradation of the gate dielectric and the Si/SiO2
interface caused by hot electrons also have irregular distributions across the structure.

The main processes of the charge degradation of MIS structures with dielectric films
of the thickness of interest are as follows: the inter-band impact ionization in the SiO2 film,
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which is caused by the “tail” of distribution of hot electrons, resulting in the generation of
an electron–hole pair with the subsequent drift and capture of the holes in the dielectric
at its interface with silicon; the injection of the holes from the anode; the drift of the holes
and their accumulation at the Si/SiO2 interface; the generation of the surface states, which
are created upon the recombination of the captured holes with the injected electrons, and a
hydrogen redistribution as a result; and the formation of new electron traps in the SiO2
bulk, which are created due to the interaction of hot electrons with hydrogen-containing
defects. As a result of the injection degradation, an increase in the density of the surface
states and accumulation of a positive charge in the SiO2 film at the Si/SiO2 interface occur.
The irregular distribution of these states across the structure could result in a local rise in
the injection current, the subsequent formation of positive feedback, and, as a consequence,
structural breakdown. Consequently, the amount of charge injected into the gate dielectric
before its breakdown is determined by the injection degradation rate, which increases with
increasing electric field. Thus, a lower amount of the charge injected until the breakdown
when increasing the density of the constant injection current correlates with increasing the
rate of charge degradation of MIS structures.

Accordingly, when controlling the injection stability of MIS structures, it is necessary
to take into consideration that the density of the injection current greatly influences the
type of revealed defects of charge stability. Increasing the injection current density, on the
one hand, increases the efficiency of control. Conversely, it results in the hardening of the
test modes and an increase in the amount of structures that are under breakdown at the
early stage of injection. Moreover, it results in lowering the mean value of charge injected
until the breakdown.

According to the fact that, for most MIS structures with no rough defects, the break-
down of the gate dielectric is defined by a value of the injected charge [8,12,13,15], the
value of Jbound should be chosen under the condition of the efficient statistical monitoring
of a value of the charge injected until the breakdown (Qbd). At low values of Jbound, we will
have a longer measurement time. Simultaneously, at greater values of Jbound, our method
becomes mostly the same as the J-Ramp technique [13,18,19].

In Figure 1 at step n, when the current density is limited by the Jbound value, generally,
there is no necessity to use the measurement levels and switch the current to the Jm value.
A change in the charge state at this step can be monitored by a change in the voltage across
the MIS structure (∆VI), concatenating it with the ∆Vm obtained at the measurement steps
(Figure 1). This concatenation becomes possible because of the low dynamics of change in
the charge state of the gate dielectric (Figure 2) when changing from the rising current step
to Jbound (Figure 1).

Figure 3 shows the change in the voltage across the MIS structure under the high-field
electron injection in the mode of maintaining a constant current density of 10−2 A/cm2

(curve 1) and when measuring by the proposed method at Jbound = 10−2 A/cm2 (curve 2).
Figure 3 demonstrates that the maximum value of positive charge, generated in the gate
dielectric, is similar for both of the methods considered. When studying the proposed
method, the maximum value of the positive charge is reached at greater values of the
injected charge, which is caused by the presence of a step with increasing current at which
the formation of the positive charge has a significantly lower intensity.

Thus, the results presented in this paper describe a change in the charge state of the
gate dielectric on the basis of the measurement of ∆Vm at the step of increasing current
and ∆VI at the step of maintaining the Jbound constant current. Those results are almost
identical to the results obtained on the basis of the ∆Vm measurement during the whole test.
In addition, we have established that the maximum value of the positive charge formed in
the gate dielectric when tested by the method presented in the article was similar to the
value obtained when the charge was injected into the dielectric in the mode of maintaining
a constant current of the same value as the Jbound.
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Monitoring both the defectiveness of the dielectric film and the change in its charge
state using the proposed technique was implemented on one hundred test MIS capacitors
formed on one semiconductor wafer in accordance with the technological process described
above. In order to analyze the statistical distribution of the defectiveness, we use a Weibull
plot. This plot characterizes the probability of the gate dielectric breakdown under a
set value of charge injected until the breakdown. A Weibull distribution has a bimodal
character, which is a superposition of two distribution plots, one of which correlates with
the presence of the external defects and the second correlates with the presence of the
internal defects [8,12,13,21–23]. A difference in these distributions was observed at a value
of about 1 C/cm2 of the injected charge. More than 65% of the studied samples yielded
breakdowns at values of Qbd higher than 1 C/cm2 and were characterized by internal
defects. For all the samples with internal defects, a change in the charge state of the gate
dielectric during all the performed tests demonstrated results similar to the data shown in
Figures 1 and 2.

Two of the one-hundred studied MIS capacitors have higher changes in the charge
state of the gate dielectric in comparison with the results presented in Figures 1 and 2.
The breakdown of these capacitors happened at the initial stage of testing. Apparently,
the capacitors have rough external defects that correlate with the presence of impurities
or structural defects. For the remaining 35% of the MIS capacitors, with external defects
and experiencing the breakdown at injected charge values up to 1 C/cm2, the change
in the dielectric charge state remained mainly close to the experimental data shown in
Figures 1 and 2, with the only difference being the earlier breakdown of the dielectric. This
result is well-explained by the previously discussed models, in accordance with which the
area of the external defect is many times smaller than the area of the MIS capacitor, and the
local change in the charge state in the defect spot has a small effect on the overall change in
the charge state of the sample under study.

Thus, monitoring the changes in the charge state of MIS capacitors, implemented
by the proposed TDDB control technique, first of all makes it possible to analyze the
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external defects in the gate dielectric. Moreover, this is especially true when the quality
of the gate dielectric manufacturing process is low. For many MIS devices, a failure due
to the deterioration of the gate dielectric charge occurs much earlier than a failure due to
breakdown. Thus, the proposed technique makes it possible to control the test samples
not only by the charge injected into the gate dielectric before the breakdown but also by
the charge value at which irreversible degradation of the dielectric charge state (Qdeg)
occurs [15]. A value of Qdeg should be selected based on the additional research and testing
of MIS devices with a modified gate dielectric.

5. Conclusions

This paper proposes a new technique for testing the gate dielectrics of MIS devices at
the wafer level by injecting electrons into the dielectric in a strong field while increasing the
injection current to a given level. This method is characterized by a short-term switch to the
amplitude of the measuring current after each step of the voltage current. These switches
occur at current stress densities that cause a significant change in the charge state of the
MIS structure. Voltage monitoring at the measurement stages makes it possible to evaluate
a change in the charge state of the dielectric films of MIS structures throughout the test and,
on its basis, to study the processes of the charge degradation of the gate dielectric leading
to a device failure and the subsequent breakdown of the dielectric film. It was found that a
maximum value of positive charge, obtained when testing by the proposed method, had
a value close to that obtained when the charge was injected into the dielectric under the
influence of a direct current with a value of Jbound.
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