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Abstract: This study presents an air quality monitoring system that employs the Arduino Uno
microcontroller. The system is augmented with a moving average filter and data fusion techniques
from BME680 and CCS811 sensors, which are designed to process and combine data from these
sensors. The system was tested and analyzed empirically across a range of residential environments
in order to validate its efficacy. The findings indicated that the typical IAQ level in a bedroom was
approximately 20 units. However, this level increased significantly, reaching 140 units, within minutes
after the introduction of a 17% perfume spray. In contrast, the use of an aromatic diffuser resulted in
a smaller increase in IAQ to 40 units, which returned to normal levels after ventilation. Moreover, the
analysis demonstrated that the kitchen and bathroom exhibited inferior air quality in comparison to
the bedroom. This was evidenced by elevated VOC and humidity levels, which were observed to be
10–20% higher due to the combined effects of household activities and inadequate ventilation. This
study makes a significant contribution to the field of air quality monitoring by proposing a solution
that employs sensor technology and data processing methods to enhance the quality of life within
residential spaces.

Keywords: analysis; air quality; monitoring; temperature; humidity; sensors

1. Introduction

The importance of indoor air quality (IAQ) in affecting human health and well-being
is undeniable, particularly given the significant amount of time people spend indoors [1–3].
Poor IAQ can cause a range of physiological issues and potential long-term health problems,
extending beyond simple discomfort [4]. Research indicates a concerning association
between prolonged exposure to poor IAQ and a significant increase in cancer risk, estimated
at 16% [1]. Volatile organic compounds (VOCs) are recognized as significant contributors
to the deterioration of IAQ, despite their often-unnoticed presence [5–7]. Achieving an
indoor environment with minimal VOC presence remains a challenging goal, with complete
elimination appearing particularly elusive. In response to this challenge, targeted strategies
for managing VOC emissions have been developed [8–10]. While these actions are valuable,
they represent gradual steps toward achieving lower VOC concentrations. CO2 levels and
humidity also have substantial effects on indoor environments.
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In this connection, there is a need to develop effective monitoring systems for these
parameters to prevent their further negative impact. It is equally important to process
the data flow from the sensors of such systems. Due to the complexity of the issue and
the importance of accurate IAQ monitoring, a data filtration method, specifically, the
moving average filter was implemented [11]. Additionally, data fusion from two sensors
was integrated into a sensor-based air quality monitoring system. This dual approach
represents a significant advancement, enhancing the system’s capability to provide a
comprehensive analysis of air quality [12,13]. Furthermore, data fusion can provide a
more comprehensive understanding of IAQ by leveraging the unique strengths of each
sensor [14,15].

Several studies have investigated different systems for monitoring air quality, demon-
strating the effectiveness of IoT technologies in using cost-effective sensors to evaluate
indoor air quality [1,16–18]. Previous studies have primarily focused on analyzing indoor
environmental quality in various building types [19–25]. Despite the extensive body of
work in this field, there is still a noticeable gap in research focusing on air quality monitor-
ing in different residential areas. In recent years, there have been notable advancements in
sensor technology and data fusion methods, which have led to significant improvements in
the precision and versatility of IAQ monitoring systems. Modern low-cost, high-sensitivity
sensors, which measure VOC, CO2, and environmental factors, have become the foundation
of many IAQ systems. These sensors, in conjunction with machine learning algorithms,
are being employed with increasing frequency to forecast IAQ trends and anomalies. Fur-
thermore, the utilization of sophisticated filtering algorithms, including Kalman filters
and wavelet transforms, has enabled researchers to refine data in real time, eliminating
noise and providing more reliable insights into air quality dynamics [15,26–29]. Despite
the extensive body of work in this field, there is still a noticeable gap in research focusing
on air quality monitoring in different residential areas.

This study aims to address this gap by improving the understanding of IAQ factors
in homes and promoting the use of monitoring systems in residential spaces. This work
investigates the impact of common household activities and products on IAQ and air qual-
ity disparities within different areas of the home. This study utilizes Arduino Uno-based
systems, along with Internet of Things (IoT) technology and cost-effective sensors. The
developed and implemented system is optimized for IAQ surveillance and appointed to
provide actionable insights for occupants to improve their living conditions. By integrating
both a moving average filter and data fusion from multiple sensors, this research builds
upon existing methods and offers a robust solution for real-time IAQ assessment in do-
mestic settings. Our study employs controlled experiments to elucidate the effect of the
introduction of aromatic additives on IAQ parameters, thereby providing valuable insights
into the potential health implications.

2. Implementation of the System

The Arduino Uno platform is the foundation of the system due to its robust computa-
tional abilities and extensive compatibility with various protocols via its interfaces. This
platform was chosen for its user-friendliness and widespread acceptance across numerous
projects, ensuring seamless integration and application versatility [30].

To capture a broad spectrum of air quality metrics, the system integrates two multi-
functional sensors: the BME680 and CCS811. The sensors are selected for their precision
in capturing environmental data, including temperature, humidity, atmospheric pressure,
carbon dioxide (CO2) concentrations, VOC, and IAQ.

The system aims to provide a convenient and effective tool for IAQ evaluation, catering
to the growing consumer interest in intelligent home technologies that enhance both
environmental health and individual comfort.

Figure 1 provides an overview of the system’s design, while Figure 2 offers a detailed
view of the electrical circuitry that underpins the intelligent air quality monitoring system.
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The diagram clarifies the connections and functionalities within the system, revealing its
operational dynamics and the intricate workings of its components.

Figure 1. External appearance of the developed system.

Figure 2. Functional electrical circuit diagram of the system.

The system’s design centers around the BME680 and CCS811 sensors, which are
integrated using the I2C communication protocol to interface with the Arduino Uno micro-
controller [26]. These sensors continuously monitor and quantify key air quality metrics,
including temperature, humidity, atmospheric pressure, CO2, and VOC concentrations.
The sensors collect data which are then sent to the microcontroller for analysis.

The BME680 sensor, developed by Bosch, is a versatile environmental sensor that
integrates the measurement of various environmental parameters, including gas, humidity,
temperature, and pressure. It integrates the measurement of VOC (formaldehyde, benzene,
toluene, acetone, ethanol, and xylene) from various sources such as paints, lacquers, paint
strippers, cleaning supplies, furnishings, office equipment, glues, adhesives, etc. The
device is capable of measuring CO2 levels with rapid response times of under one second,
rendering it suitable for real-time monitoring of air quality. Furthermore, the sensor is
capable of accurately measuring humidity (0% to 100% RH), temperature (−40 ◦C to
+85 ◦C), and atmospheric pressure (300 to 1100 hPa). The BME680 is operational within
a voltage range from 1.7 V to 3.6 V and is encased in a compact package measuring
3.0 mm × 3.0 mm × 0.93 mm, supporting both I2C and SPI communication interfaces.

In contrast, the CCS811 sensor (SparkFun, Niwot, CO, USA) has been designed with
the specific purpose of monitoring indoor air quality. It is capable of measuring equivalent
CO2 levels from 400 to 8192 ppm and VOC levels from 0 to 1187 ppb. This sensor is
designed with an emphasis on air quality assessment, with a particular focus on the
detection and quantification of airborne pollutants. The CCS811 operates within a voltage
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range from 1.8 V to 3.6 V, utilizing the I2C communication interface. Its compact form factor
(2.7 mm × 4.0 mm × 1.1 mm) and specialized gas sensing capabilities make it particularly
well-suited for applications where accurate indoor air quality measurements are essential.

The sensors are capable of detecting changes in total volatile organic compound
(TVOC) concentrations, which include analytes such as formaldehyde, benzene, toluene,
acetone, ethanol, and xylene. It should be noted, however, that the BME680 and CCS811
sensors are not designed to specifically identify or differentiate between individual VOC.
In lieu of identifying specific VOCs, these sensors provide a comprehensive assessment
of indoor air quality by detecting the overall presence of VOCs. To illustrate, the BME680
(Bosch Sensortec, Kusterdingen, Germany) employs a metal-oxide gas sensor to respond
to a diverse array of airborne pollutants, whereas the CCS811 gauges VOC levels without
isolating specific compounds. Our objective was not to achieve selective detection of
individual VOC, which is why we selected these specific sensors. Nevertheless, selective
VOC detection can be integrated into our system by incorporating additional sensors
designed for that purpose.

The Arduino Uno microcontroller acts as the central point of the system, receiving
and processing sensor data [31]. It uses its processing capabilities to execute complex
algorithms and evaluate the gathered IAQ parameters, providing a detailed assessment of
the air quality in the monitored environment. The NX3224T028 (ITEAD Intelligent Systems
Co., Ltd., Shenzhen, China) display serves as a user-friendly interface [32], connecting
directly to the Arduino Uno through the UART port, which includes both RXD and TXD
functionalities [33]. This configuration enables the display to promptly present air quality
data to users, empowering them to make informed decisions and actively contribute to
enhancing IAQ [34]. Additionally, the system includes an audible warning feature. This
feature is activated by a single input to the speaker, which emits audible alerts when air
quality levels exceed predetermined limits. This critical function acts as an effective alert
system, facilitating swift action to address air quality concerns and enhancing the safety
and healthiness of indoor environments [35].

The air quality monitoring system has a color-coded display that intuitively shows
important air quality metrics. This display gives users an immediate overview of the IAQ
in the observed area, including CO2 levels and VOC concentrations.

The integration of the color-coded display significantly enhances user interaction
and accessibility, making it an ideal tool for a wide range of users, regardless of their
technical background. This feature encourages users to actively participate in monitoring
and improving their IAQ.

The system is designed to provide an accessible and straightforward means for users
to assess air quality, as demonstrated by the combination of the color-coded display and
the detailed air quality index in Table 1. This highlights the system’s role in promoting
informed and proactive IAQ management.

Table 1. The ranges for the color-coded air quality indicators.

Air Quality Index (Color) CO2, ppm IAQ, a. u. VOC, ppb

Good (Green) ≤700 ≤50 ≤200
Moderate (Yellow) 701–1000 51–175 201–400
Sensitive (Orange) 1001–1500 176–200 401–600
Unhealthy (Red) 1501–2500 201–300 601–1000

Hazardous (Purple) >2500 >300 >1000

Table 2 shows the maximum possible measurement deviations for various air quality
indicators in the air quality monitoring system. These deviations are in line with the
specifications provided by the sensor manufacturers, confirming the system’s measurement
precision and reliability.
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Table 2. The maximum possible measurement deviations of the air quality indicators.

Air Indicator Maximal Possible Error Measurement Ranges

Atmospheric pressure ±1 hPa 300–1100 hPa
CO2 ±3% 400–8192 ppm

Humidity ±3% 0–100%
Temperature ±1.0 ◦C −40–85 ◦C

VOC ±3% 0–11,870 ppb

An air quality monitoring system was developed using a moving average filter al-
gorithm to enhance data processing efficiency. The filter window was set to encompass
10 measurements, which effectively reduced temporal noise and deviations inherent in
sensor-derived data. The system was designed based on empirical analysis to balance noise
mitigation and preservation of significant data trends [36].

It includes a moving average filter that utilizes a cyclic buffer for sensor data manage-
ment. This configuration enables real-time data processing by dynamically updating with
new measurements while discarding the oldest [37]. This results in the calculation of an
average based on the ten most recent readings, providing a more precise representation of
IAQ. The use of a moving average filter improves data quality by reducing noise interfer-
ence. This enhances the system’s adaptability across diverse measurement scenarios and
increases the reliability and accuracy of air quality monitoring.

As part of developing an air quality monitoring system, data from the BME680 and
CCS811 sensors was integrated using optimal fusion parameters to ensure high accuracy
and reliability of monitoring [38]. The strategy was to exploit the synergy between the
two sensors. The BME680 provided important temperature and humidity data, while
the CCS811 focused on measuring VOC concentrations and equivalent CO2 levels. This
combination of data provided a more complete picture of IAQ.

To implement data fusion effectively, an algorithm integrating measurements from
both sensors was developed, considering their timestamps to synchronize the data [39].
The system analyzes the collected data using machine learning techniques, such as neural
networks, to identify relationships between humidity, temperature, VOC, and CO2 param-
eters. This approach enables the accurate determination of air pollutant levels and the
prediction of potential changes in air quality based on the dynamics of these parameters.

The integration process considers the significance of normalization and pre-processing
of input data to ensure compatibility and compliance with the analytical model’s require-
ments. The use of filtering and normalization helps eliminate potential data distortions
and improve the accuracy of the system’s conclusions. The integration results demonstrate
that using data from multiple sensors improves the accuracy of air quality measurements.

In order to achieve the optimal data fusion process, a weighted averaging technique
was employed, whereby data from the BME680 and CCS811 sensors were combined in
order to leverage the strengths of each sensor. The multi-parameter readings provided by
the BME680 were enhanced by data obtained from the CCS811, thus facilitating a more
comprehensive understanding of IAQ. The fusion algorithm assigns weights based on the
accuracy and relevance of each sensor’s data for specific air quality parameters, thereby
ensuring that the final readings reflect the most reliable and pertinent information.

The efficacy of these algorithms was verified through extensive testing across diverse
residential environments. The effectiveness of the moving average filter was validated by
comparing raw sensor data with filtered data, demonstrating a clear reduction in noise and
transient anomalies without sacrificing significant trends.

Our machine learning model processes the sensor data to recognize patterns and
correlations that may not be immediately apparent through simple observation. This
analysis enables the system to provide more meaningful and actionable insights into indoor
air quality, thereby facilitating proactive air quality management. This machine learning-
based approach is a key element of the system’s intellectualization, transforming it from an
ordinary measuring device into an intelligent air quality management tool.
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The integration of BME680 and CCS811 sensor data in a fusion air quality monitoring
system is a crucial step toward developing an advanced solution capable of providing
an accurate and comprehensive assessment of air quality in residential areas. The use
of advanced data processing methods significantly enhances the system’s potential to
detect and respond to changes in air quality, contributing to a healthier and safer home
environment [40].

The calibration of the CC811 and BME680 sensors is a crucial process in order to
ensure precise and reliable indoor air quality monitoring. The CC811 sensor requires an
initial baseline correction in order to account for sensor drift over time. This is achieved by
exposing the sensor to clean air to establish a reference point. The baseline correction is vital
as it adjusts the sensor’s output to reflect true ambient conditions. Additionally, the sensor
is subjected to environmental conditioning, whereby it is subjected to controlled variations
in temperature and humidity. This step helps to understand the sensor’s behavior under
different conditions and allows for necessary adjustments to be made to maintain accuracy.
Furthermore, the CC811 sensor is exposed to known concentrations of target gases. During
this stage, the sensor’s readings are compared to the known values, and adjustments
are made to align the sensor’s response with the actual gas concentrations. This process
ensures that the sensor is able to accurately detect and quantify VOC and CO2 levels in
real-world scenarios.

The BME680 sensor, which integrates gas, pressure, humidity, and temperature sens-
ing capabilities, undergoes a similarly detailed calibration process. Temperature calibration
is performed by placing the sensor in environments with known temperature levels and
adjusting its readings to match these known values. Humidity calibration follows a similar
procedure, where the sensor is exposed to environments with known humidity levels. In
order to ensure the precise detection of gases, the BME680 sensor is exposed to standard
concentrations of gases. Its response is then calibrated in order to account for any dis-
crepancies. Additionally, the BME680 utilizes sophisticated compensation algorithms that
integrate temperature and humidity data in order to correct gas concentration readings.
These algorithms ensure that the sensor’s output remains accurate under varying environ-
mental conditions, accounting for potential cross-sensitivity effects among the different
measured parameters. This comprehensive calibration process for both sensors ensures that
they provide reliable and accurate data for indoor air quality monitoring, rendering them
effective tools for maintaining healthy indoor environments. By meticulously calibrating
these sensors, we can ensure they deliver high-quality performance, which is essential for
applications in smart homes, HVAC systems, and environmental monitoring solutions.

A comprehensive calibration of two sensors was conducted, with a focus on tem-
perature, humidity, VOC, and CO2 measurements. The calibration was performed by
comparing the sensor readings to reference values obtained under controlled laboratory
conditions. Post-calibration, the results demonstrated a significant improvement in the
accuracy of both sensors. The calibrated data closely aligned with the laboratory reference
values, indicating that the calibration procedure effectively reduced measurement discrep-
ancies and enhanced overall sensor performance. Figure 3 illustrates the calibration results
for temperature, humidity, VOC, and CO2, respectively.
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Figure 3. Results of temperature, humidity, VOC, and CO2 calibrations.

3. Analysis of the Variation of the Air Quality in the Different Living Rooms of a
Single Building

This study aimed to conduct an examination of the variations in air quality across
different rooms within a single building, specifically a bedroom, a kitchen, and a bathroom.
Three identical systems were designed to collect sensor data continuously for 10 days.
To ensure consistency and reduce the impact of time-related variability, measurements
were systematically taken at 1:00 PM each day. A 30-min sensor calibration period was
conducted before each data recording session to ensure the accuracy and reliability of the
gathered data [33]. This methodical approach allowed for a detailed exploration of the air
quality dynamics unique to each of the examined living spaces.

Figure 4 presents a comparison of the discrepancies between the three identical sys-
tems. These figures illustrate that there are minimal differences between the systems. Due
to the meticulous calibration process, a lower level of error was achieved than initially
anticipated by the manufacturers.

The investigation generated comprehensive data on four key air quality metrics: IAQ,
humidity, CO2 levels, and VOC. Each metric was meticulously recorded and evaluated
for the three rooms under study. Figure 5 illustrates the CO2 levels, Figure 6 shows the
humidity data, Figure 7 depicts the findings related to IAQ, and Figure 8 displays the
VOC measurements.

This study aims to disclose the distinct air quality variations observed within different
residential zones by analyzing the patterns depicted in these figures. It focuses on IAQ and
aims to shed light on the underlying causes affecting it. The study paves the way for future
research and interventions to improve living conditions. The outcomes of this analysis
provide a basis for making informed decisions and adopting evidence-based strategies to
promote healthier and eco-friendlier indoor environments.
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Figure 4. Temperature (a), humidity (b), VOC (c), and CO2 (d) comparisons of the three systems.

Figure 5. Dataset for carbon dioxide.

Figure 5 shows the difference in CO2 levels between the kitchen, bathroom, and
bedroom, with the kitchen having the highest CO2 concentrations. The significant disparity
in CO2 concentrations, with the kitchen exhibiting the highest levels, suggests the presence
of underlying factors influencing indoor air quality dynamics within each space. In the
kitchen, the elevated CO2 levels may stem from various sources, including inadequate
ventilation, the use of gas appliances, and the accumulation of airborne contaminants
emitted during cooking activities [27,41]. Additionally, factors such as poor air circulation
and limited airflow contribute to the buildup of CO2 in this area.

Conversely, the bathroom demonstrates relatively lower CO2 levels compared to the
kitchen, indicative of improved ventilation practices or the presence of exhaust fans that
facilitate the removal of indoor air pollutants. However, despite the apparent ventilation
improvements, the use of cleaning products and air fresheners in the bathroom may intro-
duce VOC into the air, contributing to a decline in overall air quality when compared to the
bedroom environment. Furthermore, it is crucial to consider the frequency and duration of
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occupancy in each space, as human activities can significantly influence indoor air quality
parameters. For instance, prolonged occupancy in the kitchen during meal preparation may
lead to higher CO2 levels due to increased metabolic activity and exhalation of occupants.
The observed differences in CO2 levels among the kitchen, bathroom, and bedroom un-
derscore the complex interplay of various factors, including ventilation efficiency, human
activities, and the presence of indoor pollutants. A more comprehensive understanding of
these dynamics is essential for the implementation of targeted interventions designed to
improve indoor air quality and enhance occupant well-being.

Figure 6. Dataset for humidity.

Figure 7. Dataset for indoor air quality.

The humidity variations depicted in Figure 6 highlight distinct patterns across dif-
ferent indoor spaces. The kitchen and bathroom exhibit higher humidity levels than the
bedroom. These elevated humidity levels can be attributed to several factors, including
activities involving water use and the lack of efficient ventilation systems in these areas [42].
In the kitchen, culinary processes such as cooking and dishwashing contribute to increased
moisture levels in the air. The evaporation of water during cooking, boiling, and steaming
activities adds humidity to the indoor environment, particularly in the absence of adequate
ventilation to remove excess moisture. Similarly, in the bathroom, activities such as show-
ering, bathing, and air-drying laundry introduce moisture into the air, leading to higher
humidity levels within this space. Furthermore, the general lack of efficient ventilation
exacerbates the humidity levels in both the kitchen and bathroom. In the absence of ef-
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fective airflow and ventilation systems, moisture accumulates, creating an environment
conducive to mold growth and other indoor air quality issues. In contrast, the bedroom
typically exhibits lower humidity levels due to reduced water-related activities and poten-
tially better ventilation. However, factors such as proximity to external sources of moisture,
such as leaky pipes or damp walls, may still influence humidity levels in this space. It is,
therefore, of the utmost importance to gain an understanding of the implications of these
humidity variations if one is to be able to mitigate indoor air quality issues and maintain a
comfortable and healthy indoor environment. Implementing strategies to improve ventila-
tion, such as installing exhaust fans or utilizing dehumidifiers, can help regulate humidity
levels and prevent moisture-related problems in indoor spaces. Additionally, promoting
good ventilation practices and minimizing activities that contribute to excessive moisture
build-up can further enhance indoor air quality and occupant comfort.

Figure 8. Dataset for volatile organic compounds.

The variations in IAQ depicted in Figure 7 highlight distinct patterns across different
indoor spaces. The kitchen and bathroom exhibit lower air quality compared to the bed-
room. Several factors contribute to these differences, including the presence of household
chemicals, cleaning products, and air fresheners, coupled with elevated humidity levels in
these spaces. In the kitchen, the use of cooking appliances, cleaning agents, and other house-
hold chemicals can release VOC into the air, contributing to reduced IAQ. Furthermore,
the combustion of fuels and the production of particulate matter during cooking activities
can also contribute to the deterioration of air quality in this area. The combination of these
factors, in conjunction with potentially inadequate ventilation, can create an environment
conducive to the accumulation of indoor air pollutants [43].

Similarly, the bathroom may also contain a variety of household chemicals, including
cleaning products, personal care items, and air fresheners, which can emit VOC and
other pollutants into the air. It is of the utmost importance to gain an understanding
of the factors influencing IAQ variations if effective strategies are to be implemented to
improve indoor air quality and promote occupant health and well-being. Measures such
as proper ventilation, regular cleaning and maintenance, and the minimization of the use
of potentially harmful chemicals can help to mitigate indoor air pollution and create a
healthier indoor environment for occupants.

Figure 8 illustrates the distribution of VOC concentrations across the examined living
spaces, demonstrating notable disparities among them. The highest concentrations of VOC
are observed in the bathroom, primarily attributed to the presence and use of air fresheners,
cleaning products, cosmetics, and personal care items [44]. These sources emit a variety of
VOC into the air, contributing to elevated levels within the confined space of the bathroom.
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In the kitchen, the levels of VOC are influenced by the cooking activities that take
place there and the operation of air heaters, both of which can release VOCs into the
indoor environment. Cooking processes, including frying, baking, and grilling, produce
combustion byproducts and cooking emissions, which further contribute to the VOC load in
the kitchen air. Additionally, the operation of gas appliances and the use of certain cooking
materials may also contribute to VOC emissions. Conversely, in the bedroom, sources of
VOC are minimal compared to those in the kitchen and bathroom. While personal care
products and cleaning agents may still contribute to VOC emissions to some extent, their
impact is typically lower in this space. As a result, VOC concentrations in the bedroom are
generally lower compared to the other living spaces examined.

In order to provide a comprehensive background for our indoor air quality assess-
ments, we conducted outdoor measurements for temperature and humidity over a period
of 10 days. These measurements serve as a reference to better understand the dynamics
of the indoor environment. The inclusion of outdoor temperature and humidity data,
presented alongside the existing indoor IAQ indexes, enables a more nuanced analysis
by accounting for external influences. This approach helps to contextualize the indoor air
quality data, offering a clearer understanding of the factors affecting indoor environmental
conditions. The accompanying images illustrate the outdoor temperature and humidity
trends, providing essential background information for our study. Figure 9 presents the
outdoor temperature and Figure 10 shows the outdoor humidity.
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Figure 11 illustrates the fluctuations in CO2, VOC levels, and IAQ index throughout
the day, from 8:00 to 22:00.

Figure 11. Variations in CO2 levels (a) as well as VOC Levels and IAQ (b) throughout the day.

This visualization offers a comprehensive overview of the fluctuations in concentra-
tions of volatile organic compounds and their corresponding impact on indoor air quality
over the course of the day. The illustration demonstrates the relatively stable behavior
of the IAQ index and VOC levels throughout the day, with IAQ remaining within the
range of 50–65 and VOC concentrations between 15 and 20. These stable levels indicate
that, despite the occurrence of daily indoor activities, there were no notable increases in
pollutant sources such as cleaning products, cooking, or aerosols that typically elevate
VOC levels. Similarly, the IAQ index, which is influenced by a combination of CO2, VOC,
and other factors, demonstrates minimal variation, indicating that the indoor air quality
remained moderate without significant deterioration throughout the day.

However, the CO2 concentration demonstrates a consistent upward trajectory, rising
from 460 ppm at 08:00 to 620 ppm by 22:00. This increase can be attributed to the gradual
accumulation of exhaled CO2 from occupants in the enclosed environment, combined with
potentially limited ventilation throughout the day. The uninterrupted increase in CO2
levels, without parallel rises in VOC or IAQ values, underscores the influence of human
activity, particularly respiration, on indoor air quality. This trend in CO2 emphasizes the
necessity for effective ventilation in order to prevent the accumulation of carbon dioxide
in residential spaces, particularly in situations where IAQ and VOC levels may remain
constant but CO2 rises due to inadequate air circulation. Prolonged exposure to elevated
CO2 concentrations can result in discomfort and a reduction in cognitive function, making
it a crucial parameter to monitor and address.

In our analysis, we employed machine learning techniques, particularly neural net-
works, to identify and model the relationships between different air quality parameters,
including humidity, temperature, CO2, and VOC. The neural networks were trained on
off-the-shelf datasets, and the results were presented using data collected from CCS811
and BME680 sensors. Data preprocessing techniques were employed to ensure the quality
and relevance of the input data. Consequently, predicted values were generated that ex-
hibited a high degree of correlation with actual sensor measurements, as illustrated in the
accompanying calibration graphs.

The predicted trend was derived from a model trained on a substantial dataset of exper-
iments conducted in controlled laboratory environments. The implementation of controlled
conditions permitted the attainment of consistent measurements and the minimization of
external variability, thereby facilitating more accurate predictions.

It should be noted, however, that the actual trend presented in the figures is based on
an experiment conducted in a living space, where a number of uncontrolled factors could
potentially influence VOC levels. Such factors include the influence of daily activities, dis-
crepancies in ventilation, and the existence of supplementary VOC sources, which are not
always present or accounted for in laboratory conditions. The graphs illustrate the relation-
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ship between the measured and calibrated values of temperature, humidity, and CO2 with
VOC, thereby demonstrating the underlying dynamics of air quality indicators. They also
highlight the challenges of applying laboratory-based models to real-world environments.

Figure 12 illustrates the correlation between VOC concentrations and temperature
using machine learning models. It presents expected versus actual correlations, highlighting
the predictive capabilities of the model in capturing fluctuations in VOC levels in response
to temperature changes. This figure aids in understanding the dynamic relationship
between temperature variations and VOC emissions.

Figure 12. Correlation between VOC and temperature.

Figure 13 explores the relationship between VOC concentrations and humidity levels
through machine learning analysis. It depicts the expected versus observed correlations,
providing insights into how humidity influences VOC emissions. The figure illustrates the
model’s capacity to identify patterns and dependencies between humidity and VOC levels.

Figure 13. Correlation between VOC and humidity.

Figure 14 depicts the variation of VOC concentrations with CO2 levels using machine
learning techniques. It presents anticipated versus actual correlations, showcasing the
model’s efficacy in capturing the interplay between VOC emissions and CO2 concentrations.
This visual aids in understanding potential co-emission sources or interactions between
VOCs and CO2 in ambient air.
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Figure 14. Correlation between VOC and CO2.

The strength of these correlations varies depending on the specific IAQ parameters
involved. For instance, the relationship between CO2 and VOC concentrations is more
complex, as both are influenced by different sources and activities within a living space.
In contrast, humidity and VOC levels often show a more straightforward relationship, as
changes in humidity can directly affect the emission rates of certain VOCs.

In terms of statistical significance, the correlations observed in the controlled labora-
tory settings were robust, with high correlation coefficients indicating the strong predictive
power of the model. However, as previously discussed, the actual trends in real-world
environments, such as those observed in the living space experiments, may show discrep-
ancies due to uncontrolled variables. This variability can lead to weaker correlations in
practical applications, underscoring the need for caution when interpreting these figures in
non-laboratory conditions.

Although the machine learning models exhibit robust and statistically significant
correlations in controlled settings, the inherent complexity and variability of real-world en-
vironments may attenuate the strength of these correlations, underscoring the necessity for
caution when interpreting the results of IAQ monitoring systems in practical applications.

4. Analysis of the Impact of Fragrance Products on Indoor Air Quality

In modern scientific inquiry, IAQ is a crucial concern due to the release of VOC
from household cleaning products and chemical interactions. These VOCs can significantly
degrade IAQ, potentially resulting in adverse health outcomes and discomfort for residents.

This study conducted an analysis of the effect of household products that emit VOC
on IAQ. The study included commonly used items such as aromatic diffusers, perfumes,
and aerosol sprays, which are often used for air freshening, personal care, and cleaning.

To measure the impact of these products on IAQ, advanced analytical methods were
used to measure key IAQ parameters, including concentrations of CO2 and VOC. Accurate
CO2 measurements are essential in evaluating indoor air ventilation efficiency and the
breathing activity of occupants. VOC levels, on the other hand, indicate the release of
potentially hazardous compounds into the environment.

Figure 15 shows the impact of aromatic diffuser and perfume on CO2 (a), IAQ (b),
and VOC (c). Figure 15a presents the complete results on CO2 concentrations, providing
insight into the effect of household items on indoor air ventilation. Analyzing CO2 levels is
crucial for evaluating air exchange and identifying high CO2 levels, which may indicate
poor ventilation.
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Figure 15. Impact of aromatic diffuser and perfume on CO2 (a), IAQ (b), and VOC (c) with predicted
values and marked air quality indexes marked in Table 1.
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The figure reflects the cumulative effect of the household products under study on
the ambient air conditions. Figure 15b illustrates the findings related to IAQ, which
encompasses a variety of elements such as VOCs, particulate matter, and other airborne
contaminants that affect the healthfulness of indoor environments. By examining Figure 15b,
we can gain a better understanding of the impact that common household products have
on IAQ.

Figure 15c presents a detailed analysis of VOC data, identifying the specific VOC and
their corresponding concentrations detected throughout the experiment. This thorough ex-
amination enables the precise identification of the predominant and potentially hazardous
VOC emitted by each household product, enhancing the overall understanding of sources
of indoor air pollution and associated health risks [28,45].

The data were subjected to analysis using a predictive model [46]. The predictive
model demonstrates robust performance, as evidenced by the close alignment between
the actual data points and the predicted values. In the majority of instances, the predicted
values are closely aligned with the actual data, thereby demonstrating the efficacy of the
model for prediction across diverse environmental contexts.

It is important to note the behavior of the predictive model when encountering spikes
in the actual data. The observed data points tend to exhibit higher values during these
spikes, whereas the predicted values are somewhat lower. This discrepancy arises from
the fact that the predictive model is based on a substantial volume of training data, which
enables it to accurately predict general trends but may result in the smoothing out of
sudden, short-term fluctuations such as spikes. These spikes in the actual data represent
specific conditions or anomalies that deviate from the typical environmental patterns
captured by the model. Nevertheless, the predictive model provides a reliable basis for air
quality analysis and can be optimized to improve its performance in scenarios where air
quality is moderately or very sensitive.

The experiment began with the introduction of an aromatic diffuser located approxi-
mately five meters from the sensing equipment. The diffuser contained 50 mL of essential
oil, and diffusion commenced at 15:01, with the concentration peaking at 15:03, followed
by a gradual dispersion of VOC into the surroundings. At 15:10, there was a notable
improvement in IAQ after opening a window.

However, the window was closed at 15:12, and at 15:14, a perfume with a 17% concen-
tration was sprayed in a quantity of 0.1 mL, resulting in a marked decline in air quality. The
concentration of VOC spiked, indicating a significant presence of pollutants. The dispersion
of VOC began at 15:17, and air quality showed signs of recovery by 15:20, further aided by
the reopening of the window. Sensor readings were normalized at 15:41.

The results indicate that although aromatic diffusers have a slight negative impact on
IAQ, they do not cause dangerous pollution levels. In contrast, aerosols, as demonstrated by
the effect of perfume, can significantly compromise air quality, posing a risk in residential
or confined spaces due to potential health hazards.

In regard to the particular health consequences associated with the levels of VOC and
CO2 documented in the study, it is essential to underscore that although our experiment
did not directly assess or examine health outcomes, the data imply potential implications
for human well-being during periods of elevated VOC concentrations. During the observed
peaks, such as those caused by the perfume spray, there is a possibility that VOC levels could
have resulted in short-term health effects, particularly for individuals who are sensitive to
air pollutants, such as those with asthma or allergies. Elevated levels of VOC have been
linked to a range of symptoms, including eye, nose, and throat irritation, headaches, and
dizziness, with specific effects depending on the duration and intensity of exposure. In
confined or poorly ventilated spaces, these effects could be more pronounced, indicating
the necessity for immediate measures such as enhanced ventilation. Although the present
study was primarily concerned with the dynamics of air quality, future research might
profitably investigate the direct correlation between the observed spikes in VOC levels and
specific health impacts. Such research could extend beyond the scope of the present study
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to include real-time monitoring of health in conjunction with measurements of indoor
air quality.

This study provides insights into selecting safer household products to preserve a
healthy indoor atmosphere and safeguard occupant health. It enriches collective knowl-
edge on the interaction between daily use products and IAQ, laying the groundwork for
developing strategies to improve indoor environments. Further applications and develop-
ment may include many directions, which include not only indoor environments but also
others [47–55].

5. Discussion

The objective of this study was to demonstrate the efficacy of a low-cost IAQ monitor-
ing system in residential settings. The experimental setup yielded valuable insights into the
relationships between VOC, CO2 levels, temperature, and humidity. The employment of
data fusion techniques with sensors such as the BME680 and CCS811 enabled the capture
of detailed fluctuations in air quality, particularly in response to human activities such as
the use of air fresheners and perfumes. The results demonstrate the necessity of monitoring
IAQ parameters over time in dynamic, real-life environments, as opposed to controlled
laboratory settings where external influences are limited. The considerable discrepancies
between the laboratory-derived predictions and the actual real-life data emphasize the
intricate nature of residential spaces, where a multitude of factors—including ventilation,
occupancy, and material off-gassing—exert a pivotal influence on the determination of
air quality.

Furthermore, the study demonstrated that even minor activities, such as the use
of perfumes or essential oil diffusers, can result in considerable short-term elevations
in VOC concentrations, which, subsequently, have a detrimental impact on indoor air
quality. The observed data demonstrate that while VOC levels eventually return to normal,
these sudden spikes may pose health risks, particularly for individuals with pre-existing
conditions such as asthma or allergies. The findings emphasize the importance of effective
ventilation strategies in residential environments in order to minimize exposure to harmful
pollutants. In contrast, spaces such as kitchens and bathrooms, which typically have higher
humidity and CO2 levels, exhibited poorer air quality. This is likely due to the presence
of cooking activities and cleaning products, which further underscores the necessity for
targeted monitoring in high-risk areas.

It is acknowledged that air velocity is indeed an important parameter in the study of
indoor air quality [56]. Although our study did not specifically measure air velocity, we
designed the experiment to minimize its influence by conducting it in a relatively stable
environment where air movement was limited. It is proposed by research that air velocities
within domestic environments typically range between 0.05 m/s and 0.2 m/s. At lower
air velocities (below 0.1 m/s), the impact on pollutant dispersion is typically minimal.
In light of the controlled conditions of the experiment, it seems reasonable to posit that
any deviations in VOC concentrations due to air velocity were likely to be minor, with
a potential variation in readings of less than 5%, as evidenced by findings from similar
studies. While the impact of air velocity in our specific experimental setup was minimized,
future studies could benefit from incorporating air velocity measurements to further refine
the accuracy of IAQ assessments, particularly in more dynamic environments where air
movement could have a more pronounced effect on pollutant dispersion.

The prospective Incorporation of an air quality monitoring system into a smart home
environment has the potential to significantly expand its functionality and improve user
interaction. By connecting to a central smart home hub, the system will be able to interact
with other devices, including HVAC systems, air purifiers, and smart windows. Integration
with smart home assistants will facilitate the generation of real-time indoor air quality
alerts and queries, allowing residents to more effectively monitor and respond to changes
in indoor air quality. Such integration not only improves overall household air quality
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management but also contributes to a healthier living environment by implementing
automated and actionable actions based on real-time data.

6. Conclusions

This study presents an IAQ monitoring system, introducing intelligent, analytics-based
management of air quality. The research emphasizes the impact of household products
on IAQ and provides a comprehensive dataset for scholarly exploration. The study lays
the groundwork for future progress in IAQ research. The study’s findings are expected
to help people make informed decisions, improve indoor air quality, and raise public
health standards. The monitoring system is user-friendly and provides instant feedback on
IAQ. It gives residents valuable information about their indoor air, allowing them to make
informed decisions and improve their living environment. The integration of this system
contributes to advancing our understanding of IAQ dynamics. It advocates for a proactive
stance toward optimizing IAQ for the betterment of individual and communal well-being.

The combination of a moving average filter and data fusion from BME680 and CCS811
sensors in our IAQ monitoring system improves the stability and reliability of air quality
trends. This approach helps to identify long-term changes and patterns in VOC concen-
trations while ensuring that the system’s outputs accurately reflect the actual indoor air
conditions. By integrating a filtering technique and leveraging the strengths of multiple sen-
sors, this system highlights the importance of data quality in effectively managing indoor
environments. This approach facilitates informed decisions and interventions to improve
IAQ, paving the way for enhanced health, comfort, and well-being in residential spaces.
This advancement in IAQ monitoring is in line with the broader objective of achieving
healthier indoor environments through the use of advanced sensor technology and data
processing methods. It offers a comprehensive solution to IAQ management.
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