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Abstract: Using synchrotron radiation, a comparative VUV excitation study of YAG ceramics doped
with Eu3+ and Cr3+ ions under VUV excitation (10.5–3.7 eV) at 9 K was conducted in this work.
Both ceramics exhibit distinct excitation peaks in the VUV region, indicating high-energy transitions
related to the internal electronic levels of the dopants and interband transitions within the YAG matrix.
For YAG:Eu, the main excitation peaks at 6–7 eV correspond to transitions within the 4f-shell of Eu3+

and Eu3+-O2− charge transfer states, showing weak dependence on the crystal field and high energy
conversion efficiency. In contrast, YAG:Cr shows broad excitation bands due to transitions between
levels influenced by strong crystal field interactions, resulting in lower luminescence efficiency. The
study highlights the importance of crystal structure and dopant interactions in determining the
spectral characteristics of YAG-based ceramics, offering potential for their application in advanced
optoelectronic devices.
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1. Introduction

YAG (Y3Al5O12) crystals and ceramics doped by rare-earth ions have become an
important material in modern science and technology due to their unique luminescent
properties [1–10]. These materials are also widely used as active laser media because of their
excellent optical properties and their ability to generate intense emission at specific wave-
lengths [11]. They also find applications in optoelectronics, sensors, and detectors [12–14].
One of the key applications of YAG ceramics, doped with rare-earth ions is in lighting
technology and scintillators [15–20]. The doping of YAG with RE ions produces materials
with diverse luminescent characteristics, making them ideal for various lighting applica-
tions. As demand for these materials grows, so does the need to improve their quality
characteristics, such as color rendering index (CRI). One promising material in this re-
gard is YAG:Eu ceramics, which exhibits high energy conversion efficiency and excellent
color rendering [21]. These properties make YAG:Eu ceramics an attractive material for
developing high-efficiency phosphors used in LED light sources [22,23].

Most rare-earth ions absorb and emit light due to interconfigurational 4f → 5d tran-
sitions. The luminescence spectrum of the Eu3+ ion consists of a series of narrow bands
corresponding to intra-center transitions within the f-shell. These narrow bands demon-
strate a weak influence of the crystal field of the matrix on the f-shell electrons. For instance,
the Eu3+ ion, with its 4f6 electronic configuration, exhibits minimal shifts in the position
of its bands across different matrices [24,25]. This allows for a clear interpretation of the
luminescence spectra of Re+ ions in various materials.
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Another interesting area of research involves YAG crystals and ceramics doped with
chromium ions. It is important to note that chromium ions in a YAG can be in charge
states +3 and/or +4 [26,27]. Because there are fundamental differences in ionic radius
and valence, Cr ions are typically present as Cr3+ rather than Cr4+ to maintain valence
equilibrium with substituted Al3+ [27]. As for trivalent chromium, such ions in YAG have
an electron configuration of 3d3. The energy levels associated with this configuration
interact strongly with the crystal field of the matrix, leading to broad spectral bands in the
absorption and luminescence spectra. The energy structure of Cr3+ in YAG is sensitive to
changes in the crystal field, allowing for control over the material’s spectral characteristics
through modifications of its chemical composition and structure.

Given the unique energy states of these ions in the YAG ceramic samples, the study
of their luminescent characteristics when excited in the vacuum ultraviolet (VUV) re-
gion of the spectrum is of particular relevance. It is important to note, that precisely
with excitation in the VUV region it is possible not only to excite high-energy states
of RE, but also to study the mechanisms of energy transfer between the YAG matrix
and RE, and to study the influence of crystal lattice defects on the efficiency of lumines-
cence. Taking into account that the band gap energy value in the YAG is higher than
6.9–7.0 eV [28,29] the comprehensive study of the above processes is possible only with
special VUV spectrometers and excitation sources. Therefore, among all known possibili-
ties, synchrotron radiation is the most promising. Previous work on the VUV synchrotron
excitation of luminescence of YAG samples includes YAG:Ce3+ nanocrystals [29], undoped
YAG single crystals irradiated by 50 MeV electron beam [30], undoped, Ce3+ and Pr3+

doped YAG single crystals and films [31–33]. According [33], the band gap energy value in
the YAG is between 7.85–7.95 eV, which once again confirms that the correct study of the
relaxation processes of high-energy electronic excitations is possible only with the help of
synchrotron radiation. Among other works, we can note the VUV studies of YAG:Yb [34]
and YAG:Er [35] single crystalline films.

Research in this area opens new opportunities for the development and optimization
of luminescent materials with improved properties, which is crucial for the creation of new
generation LEDs, lasers, and other optoelectronic devices. VUV experiments are especially
valuable for investigating these materials in the context of their potential application as
scintillators. As follows from the above, the absolute majority of the research works were
devoted to pure or Ce3+ doped samples. However, samples doped with other RE-impurities
have still been practically unstudied. Therefore, the aim of this work was to study the
luminescence spectra and the corresponding excitation spectra of YAG ceramics doped
with rare-earth ions (Eu3+) and transition metals (Cr3+), which, as noted above, also play
important roles in many practical applications.

2. Synthesis of Ceramics and Experimental Research Methods

Solid-state synthesis is one of the most common methods for producing YAG+ ce-
ramics. It is based on the reaction of yttrium, aluminum, and europium oxides at high
temperatures. The advantages of solid-state synthesis include its relative simplicity, avail-
ability of raw materials, and the ability to scale up the process for producing large volumes
of ceramics.

Y3Al5O12:Eu and Y3Al5O12:Cr samples were obtained by solid-state synthesis by the
authors from L.N. Gumilyov Eurasian National University. High-purity 4N yttrium (Y2O3),
aluminum (Al2O3), europium (Eu2O3), and chromium (Cr2O3) oxides from Hebei Suoyi
New Material Technology Co., Ltd. (Handan, China), were used as raw materials for
ceramic fabrication. Fine crystalline powders of the raw materials were weighed in propor-
tions corresponding to the required chemical composition and mixed in a stoichiometric
ratio, considering the desired concentrations: for the europium-doped samples—Al2O3
(43%), Y2O3 (55%), and Eu2O3 (2%); and for the chromium-doped samples—Al2O3 (43%),
Y2O3 (55%), and Cr2O3 (2%). The oxide mixture underwent mechanical processing in
a ball mill for 30 min to reduce particle size and ensure a more uniform distribution of
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components. The resulting batch was pressed into tablets using a hydraulic press for
further synthesis.

The prepared samples were subjected to high-temperature annealing in a furnace
at temperatures exceeding 1500 ◦C more than 6 h. As a result of the solid-state syn-
thesis, Y3Al5O12:Eu (2%) and Y3Al5O12:Cr (2%) ceramics were produced. The synthe-
sized compounds were identified using X-ray diffraction analysis (Bruker D6 PHASER).
SEM and EDS analyses were performed on Tabletop Microscopes TM4000Plus II, Hitachi
High-Tech Japan.

The Williamson-Hall method used to estimate the crystallite size and microstrain
in materials. It is based on the assumption that the broadening of the diffraction peaks
can be caused by both small crystallite size and the presence of microstrain in the crystal
structure is given by: β cos θ = (kλ/D) + 4ε sin θ; where: β—full width at half maximum
(FWHM) of the diffraction peak in radians, θ—Bragg diffraction angle, λ—wavelength of
the X-ray radiation (0.15406 nm for Cu Kα), k—shape factor (~0.9 for spherical crystallites),
D—average crystallite size, ε—microstrain.

Luminescence studies were carried out using synchrotron radiation at the Super-
lumi/P66 beamline of the PETRA III synchrotron facility at DESY in Hamburg [36]. The
synchrotron radiation provided high-intensity, tunable excitation in the desired spectral
range, which was selected using a 2-m monochromator with a spectral resolution of 4 Å.
This ensured precise excitation of the luminescent states in the ceramic samples.

The emitted luminescence from the ceramics was detected using an ANDOR Kymera
monochromator, offering a spectral resolution of 2 Å, enabling accurate detection of lumi-
nescence peaks. A Newton 920 CCD camera, Oxford Instruments, UK was employed for
sensitive detection over a wide spectral range, and a Hamamatsu R6358 photomultiplier,
Hamamatsu Photonics, Japan tube was used for photon counting, particularly effective
in the ultraviolet range. The ceramic samples were prepared by cleaving larger pieces to
obtain smooth surfaces suitable for luminescence measurements. The experiments were
conducted at a temperature of 9 K using a helium-cooled cryostat to minimize thermal
noise and non-radiative losses. The excitation spectra were corrected relative to the sodium
salicylate signal, ensuring accurate and reliable data across the entire spectral range.

3. Experimental Results and Discussion

Figure 1 shows SEM, EDS and element mapping images of YAG:Eu and YAG:Cr
ceramic samples. The provided SEM images show YAG:Eu and YAG:Cr ceramics with a
magnification of 6000× at a scale of 5.0 µm. These images allow the analysis of the grain
structure and microdefects in ceramic materials. The YAG:Eu image shows that the grains
have clear boundaries and a relatively uniform size, which can be estimated in the range of
1 to 2 µm. The grains are predominantly polygonal in shape with slight elongation in some
places, no significant pores or cracks are observed, indicating a successful sintering process.
Good material density indicates effective compaction during synthesis. The interaction
between grains is tight, the absence of large pores indicates high quality synthesis and
uniform distribution of components.

Unlike YAG:Eu, the YAG:Cr structure shows greater variability in grain sizes and
shapes. Some grains are elongated, indicating uneven sintering or mechanical deformation
during processing. The grain sizes vary from 0.5 to 2 µm, indicating non-uniformity of the
grain structure. In the studied area, a pore or microcrack with an average size of about
2 µm can be observed. Micropores and irregularities can occur due to uneven distribution
during the compaction of the batch and can also be fixed as a result of high-temperature
annealing, which can fix these irregularities. Despite the presence of pores and defects,
the grains have tight contact with each other, indicating a sufficient level of compaction of
the material.
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Figure 1. SEM images (a,b), EDS spectra (c,d), and element mapping images (e,f) of YAG:Eu (a,c,e) 
and YAG:Cr (b,d,f) ceramics.

The results of the EDS analysis are shown in Table 1. Both samples show a composi-
tion very close to the stoichiometry of Y3Al5O12 (YAG). YAG:Eu: Doping with europium 
has minimal effect on the overall structure and the stoichiometry remains almost un-
changed. The data confirms the correct distribution of yttrium, aluminum and oxygen in 

Figure 1. SEM images (a,b), EDS spectra (c,d), and element mapping images (e,f) of YAG:Eu (a,c,e)
and YAG:Cr (b,d,f) ceramics.

The results of the EDS analysis are shown in Table 1. Both samples show a composition
very close to the stoichiometry of Y3Al5O12 (YAG). YAG:Eu: Doping with europium has
minimal effect on the overall structure and the stoichiometry remains almost unchanged.
The data confirms the correct distribution of yttrium, aluminum and oxygen in the structure.
YAG:Cr: Although aluminum is slightly less than in YAG, yttrium compensates for this
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deficit and doping with chromium slightly changes the overall stoichiometry. However,
for a more accurate assessment of stoichiometry and structure, X-ray diffraction (XRD)
analysis will provide clearer insights.

Table 1. Results of the EDS analysis.

YAG:Eu YAG:Cr YAG

Element Line Mass% Atom% Mass% Atom% Mass% Atom%

O K 44.98 ± 0.12 69.87 ± 0.19 43.91 ± 0.14 71.06 ± 0.22 52.6 57.9

Al K 23.18 ± 0.06 21.35 ± 0.06 18.71 ± 0.06 17.6 ± 0.06 12.5 26.4

Y L 30.82 ± 0.13 8.72 ± 0.04 36.96 ± 0.14 10.5 ± 0.04 34.9 16

Eu L 1.02 ± 0.03 0.85 ± 0.01

Cr K 0.42 ± 0.02 0.4 ± 0.01

Total 100.00 100.00 100.00 100.00 100.00 100.00

3.1. XRD Analysis

The Powder XRD analysis shows that the YAG sample doped with 2 wt% Eu and
Cr exhibits a well-ordered structure with high-intensity diffraction peaks (Figure 2). The
structure has a Y3Al5O12 phase, which belongs to the cubic system. The unit cell parameters
(Table 2) are a = 12.0244 Å (YAG:Eu), a = 12.0249 Å (YAG:Cr), α = 90◦, as confirmed by the
ICDD database (PDF-4+ 2019, Card No00-067-0134 and No. 04-007-2667). The space group
is 230 (Ia-3d), with a unit cell volume of 1747.07 Å3 (YAG:Eu) and 1738.78 Å3 (YAG:Cr) and
a calculated phase density of 4.514 (YAG:Eu) and 4.535 g/cm3 (YAG:Cr). The diffractogram
demonstrated that the solid-phase method produced a ceramic with a high degree of
crystallinity and excellent structural characteristics. In addition to the garnet phase, a
secondary phase of perovskite (YAlO3) was detected in small quantities. The perovskite
phase exhibited unit cell parameters of a = 5.178 Å, b = 5.324 Å, c = 7.374 Å for YAG:Eu,
with an orthorhombic symmetry corresponding to the space group Pbnm (ICDD card
No. 04-015-5193). Due to the low content of the perovskite phase (7.4% for YAG:Eu), its
crystallite size 23.4 nm, unit cell volumes were calculated as 203.31 Å3. Although the
YAG:Eu ceramics contain a perovskite phase, the luminescence spectral characteristics
reveal typical properties of the YAG phase, as detailed below.
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Table 2. Crystal lattice parameters for synthesized ceramics.

Sample Phase Name Content,
% a (Å) b (Å) c (Å) α (deg) V (Å3)

Space
Group

DB Card
Number

Crystallite
Size (nm)

YAG:Eu

yttrium aluminum
garnet, Y3A5O12

92.6 12.044 ±
0.002 90 1747.07

± 4.15
230 :
Ia-3d

04-007-
2667 27.5

perovskite group,
YAlO3

7.4 5.334 ±
0.002

7.407±
0.002

5.205±
0.002 90 205.88

± 4.15 62 : Pbnm 04-015-
5193 23.4

YAG:Cr yttrium aluminum
garnet, Y3A5O12

92.1 12.0249 ±
0.002 90 1738.77

± 4.15
230 :
Ia-3d

04-007-
2667 38.8

The main diffraction peaks are located at 2θ angles given in (Table 3) characterized by
high intensities and narrow widths. The crystallite size, determined using the Williamson-
Hall method, was 38.88 nm (YAG:Cr) and 27.5 nm (YAG:Eu), indicating a high-quality
structure with minimal lattice strain, amounting to only 0.115%. These results confirm that
the synthesized YAG:Eu and YAG: Cr ceramics has high stability and structural order.

Table 3. Position of diffraction peaks and FWHM (deg) of YAG:Eu and YAG:Cr ceramics.

YAG:Eu YAG:Cr

No. 2-Theta (deg) FWHM (deg) (hkl) Phase Name 2-Theta (deg) FWHM (deg)

1 18.228 0.196 2,1,1 Y3Al5O12 18.062 0.214

2 21.083 0.231 (2,2,0), (1,0,1) Y3Al5O12, YAlO3 20.872 0.234

3 24.20 0.221 1,1,0 YAlO3

4 24.331 0.381 0,0,2 YAlO3

5 27.009 0.181 1,1,1 YAlO3

6 27.912 0.212 3,2,1 Y3Al5O12 27.739 0.210

7 29.843 0.230 4,0,0 Y3Al5O12 29.996 0.093

8 33.482 0.198 4,2,0 Y3Al5O12 33.283 0.187

9 34.395 0.205 1,1,2 YAlO3

10 34.762 0.210 2,0,0 YAlO3

11 35.233 0.343 3,3,2 Y3Al5O12

12 36.754 0.201 4,2,2 Y3Al5O12 36.557 0.185

13 38.317 0.197 4,3,1 Y3Al5O12 38.117 0.185

14 40.755 0.222 1,0,3 YAlO3

15 41.270 0.204 5,2,1 Y3Al5O12 41.060 0.184

16 41.929 0.278 0,2,2 YAlO3 42.463 0.176

17 42.707 0.201 (4,4,0), (2,0,2) Y3Al5O12, YAlO3 42.749 0.102

18 44.286 0.185 1,1,3 YAlO3 43.256 0.157

19 45.667 0.154 1,2,2 YAlO3

20 46.684 0.209 5,3,2 Y3Al5O12 46.492 0.180

21 49.166 0.241 (5,4,1), (2,2,0) Y3Al5O12, YAlO3

22 49.519 0.209 0,0,4 YAlO3

23 50.771 0.323 0,2,3 YAlO3

24 51.684 0.176 6,3,1 Y3Al5O12 51.489 0.198

25 52.939 0.233 4,4,4 Y3Al5O12 52.674 0.182

26 54.277 0.069 2,1,3 YAlO3
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Table 3. Cont.

YAG:Eu YAG:Cr

No. 2-Theta (deg) FWHM (deg) (hkl) Phase Name 2-Theta (deg) FWHM (deg)

27 55.193 0.209 6,4,0 Y3Al5O12 55.004 0.178

28 55.742 0.709 2,2,2 YAlO3

29 56.313 0.207 (7,2,1), (1,3,1) Y3Al5O12, YAlO3 56.147 0.175

30 57.472 0.222 (6,4,2), (3,1,1) Y3Al5O12, YAlO3 57.267 0.176

31 60.736 0.240 (6,5,1), (1,3,2,) Y3Al5O12, YAlO3 60.565 0.183

32 61.258 0.243 0,2,4 YAlO3

33 61.881 0.216 (8,0,0), (2,0,4) Y3Al5O12, YAlO3 61.646 0.183

34 62.797 0.272 (7,4,1), (2,2,3) Y3Al5O12, YAlO3 62.706 0.153

35 64.999 0.173 (6,5,3), (2,3,1) Y3Al5O12, YAlO3 64.775 0.184

36 66.025 0.189 (6,6,0), (1,0,5) Y3Al5O12, YAlO3 65.819 0.159

37 67.633 0.212 1,3,3 YAlO3

38 68.364 0.223 1,1,5 YAlO3 68.87 0.173

39 69.103 0.162 (7,5,2), (2,3,2) Y3Al5O12, YAlO3

40 69.909 0.255 3,2,2 YAlO3 69.907 0.186

41 70.095 0.188 8,4,0 Y3Al5O12 71.891 0.176

42 72.091 0.226 (8,4,2), (0,4,1) Y3Al5O12, YAlO3 72.895 0.179

43 73.109 0.197 (7,6,1), (4,0,0) Y3Al5O12, YAlO3 73.864 0.174

44 74.073 0.192 6,6,4 Y3Al5O12

45 74.973 0.143 8,5,1 Y3Al5O12 74.842 0.189

46 76.997 0.238 (9,3,2), (1,3,4) Y3Al5O12, YAlO3 76.783 0.176

47 77.911 0.284 (8,4,4), (0,0,6) Y3Al5O12, YAlO3 77.840 0.144

48 78.348 0.184 4,0,2 YAlO3

49 78.877 0.225 9,4,1 Y3Al5O12 78.713 0.185

50 80.853 0.213 (10,1,1), (4,1,2) Y3Al5O12, YAlO3 80.634 0.170

51 81.769 0.219 10,2,0 Y3Al5O12 81.575 0.171

52 82.501 0.201 (9,4,3), (0,4,3) Y3Al5O12, YAlO3

53 83.774 0.112 2,2,5 YAlO3

54 84.146 0.193 4,2,1 YAlO3

55 84.613 0.210 (10,3,1), (2,3,4) Y3Al5O12, YAlO3 84.427 0.186

56 87.433 0.206 (10,4,0), (0,2,6) Y3Al5O12, YAlO3 87.254 0.186

57 88.213 0.493 (9,6,1), (2,0,6) Y3Al5O12, YAlO3 88.189 0.179

58 89.311 0.192 (10,4,2), (3,1,5) Y3Al5O12, YAlO3 89.131 0.197

3.2. Luminescence of YAG:Eu and YAG:Cr Ceramics

The intrinsic luminescence band of YAG in YAG:Eu and YAG:Cr ceramics, when
excited in the excitonic absorption region at 6.69, and another energy 7.5, 8.25 eV, is
shown in Figure 3a. The broad emission band with a maximum at 377 nm corresponds to
defects within the both ceramics (Figure 3a inset). The primary types of defects typically
present in such wide-bandgap oxide dielectrics as YAG include oxygen vacancies, antisite
defects (AD), which relate to lattice site disorder, and various uncontrolled impurities. In
reference [37], the intrinsic luminescence of YAG single crystals is clearly associated with
radiative recombination at YAl antisite defects.
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Studies [38,39] have shown that, in YAG-based ceramics, the intrinsic luminescence
band shifts towards the longer wavelength region of the spectrum, with a peak around
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390 nm. Additionally, the emission typically observed at approximately 300 nm in single
crystals is absent in ceramics. This emission is attributed to excitons localized near YAl
antisite defects or to recombination luminescence occurring around such defects. The
absence of the 300 nm emission band suggests that such defects are likely absent in the
ceramics, possibly due to the lower synthesis temperature compared to the growth of
single crystals from high-temperature melts. Figure 4 shows the excitation spectrum of the
luminescence for the emission maximum at 380 nm. The luminescence excitation spectrum
peaks at 6.69 eV, corresponding to the transition through the bandgap (Eg), confirming the
intrinsic luminescence of YAG.
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Figure 3b,c present the luminescence spectra in the 300–900 nm range under excita-
tion at 6.7 eV. The ratios of the intensities of intrinsic luminescence, with a maximum at
380 nm, to impurity luminescence in the region of 600–800 nm are shown. For the ce-
ramics YAG:Eu and YAG:Cr, the ratio between impurity and intrinsic luminescence was
1765 and 21, respectively. These differences in the impurity-to-intrinsic luminescence ratios
between YAG:Eu and YAG:Cr reflect disparities in the luminescent properties of the dopant
ions. In YAG:Eu, the impurity luminescence due to Eu3+ ions significantly surpasses the
intrinsic luminescence of the matrix owing to the high efficiency of energy absorption
and emission. In contrast, in YAG:Cr, the impurity luminescence from Cr3+ ions is less
pronounced, leading to a lower intensity ratio. However, in both ceramics, the impurity
luminescence remains intense. These differences are highlighted to compare energy transfer
efficiency to impurity centers and the degree of competition with intrinsic defects under
near-excitonic excitation or excitations above the bandgap width.

3.2.1. YAG:Eu

The presented (Figure 4) 3D excitation/emission mapping of YAG:Eu ceramic, con-
ducted at a temperature of 9 K, shows the dependence of luminescence intensity on excita-
tion energy (on the vertical axis) and emission wavelength (on the horizontal axis). The
intense peaks on the mapping indicate resonant transitions at certain excitation energies,
most pronounced at around 6–7 eV. The correlation between excitation energy and emission
wavelength reflects the specificity of excited electronic states in Eu3+ ions. The mapping
reveals the complex interaction of europium ions within the YAG crystal lattice. The optical
transitions are associated with internal d-f and f-f transitions in Eu3+ ions.
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Figure 5 shows the luminescence spectra of YAG:Eu ceramics with excitation under
6.9, 7.5 and 8.25 eV. The obtained spectra showed narrow-line 5Dn−7Fm luminescence of
Eu3+ ions [40].
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Figure 5. Luminescence spectrum of YAG:Eu ceramics under 6.9, 7.5 and 8.25 eV excitation.

The spectrum consists of several bands of different intensities corresponding to tran-
sitions from the 5D0 level. The most intense line with a maximum at a wavelength of
709 nm is observed for the 5D0–7F4 transition. In this wavelength region, there are also
several weak maxima with 695, 740, and 762 nm wavelengths. Sufficiently intense lines are
observed at wavelengths of 590 and 595 nm, which corresponds to the 5D0–7F1 transition,
as well as at wavelengths of 609 and 630 nm, which corresponds to the 5D0–7F2 transition.
The lowest intensity is the 5D0–7F3 transition with maxima at 649 and 654 nm, 740 and
762 nm lines are due to the 5D0–7F5 transition. Figure 6 shows the normalized luminescence
excitation spectra for several emission bands. The excitation spectrum does not change for
all emission maxima.
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The excitation spectra for the emission bands at 590, 596, 610, 695 and 710 nm, as
well as the luminescence spectrum of YAG:Eu ceramics, are shown in Figure 6. The main
excitation band of intrinsic emission, as seen, corresponds to the exciton transition at
6.77 eV. In the excitation spectra recorded at the emission maxima of the Eu3+ ion, a broad
band with peaks at 6.89 eV nm and 6.64 eV is observed. It is known that energy absorption
resulting from the exciton transition (7 eV) in a doped crystal may involve two mechanisms
of excitation energy relaxation. These mechanisms include charge transfer transitions and
transitions between the f and d electronic levels of the europium ion (Eu3+). In the case of
YAG, the charge transfer process involves the electron transition between the Eu3+ ion and
oxygen ions in the matrix Eu3+-O2− [41]. This may lead to the formation of transient Eu2+

states and an increase in oxygen vacancies. The difference in the excitation spectra at the
registration maxima of 380 nm and 590 nm shows that light absorption can occur at these
transitions, which contributes to the excitation of electrons in the crystal lattice.

The energy position of the charge transfer state (CTS) of Eu3+ is associated with the
covalent bond between Eu3+ and O2−, and the symmetry number of Eu3+. The higher the
covalence of the Eu3+-O2− bond, the lower the energy position will be. Figure 7 shows the
energy transition scheme corresponding to the different maxima in the excitation spectra
(curve 2), and a luminescence maximum of Eu3+ is observed at 6.64 eV, which is associated
with the charge transfer process. The second excitation region between 4.28 and 6.86 eV
contains several weak sharp peaks related to the f–f electronic transitions of Eu3+ ions, with
maxima at 300 and 321 nm (7F0–5LJ), which corresponds to [41].
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3.2.2. YAG:Cr

As is well known, the Cr3+ ion has an electron configuration of d3. In the absence of an
external field, the electrons can occupy any of the five possible d orbitals. However, when
the Cr3+ ion interacts with the crystal field of YAG, the d orbitals undergo energy splitting,
resulting in the formation of the 4A2, 2E and 4T2 levels. This splitting significantly affects the
optical and other physical properties of the ion, which is crucial in materials science. Due
to this, YAG ceramics doped with chromium (Cr3+) exhibit unique luminescent properties,
making them promising materials for various practical applications.

The luminescence spectra of YAG:Cr ceramics were also measured at a temperature of
9 K under VUV excitation. In the presented Figure 8, the 3D excitation/emission mapping
for YAG:Cr ceramics at 9 K shows the dependence of luminescence intensity on excitation
energy (vertical axis) and emission wavelength (horizontal axis). Excitation in the range of
6 to 8 eV leads to the appearance of intense luminescent bands, indicating strong optical
transitions. The horizontal axis represents the emission wavelengths from 680 to 800 nm.
The most intense luminescence bands are concentrated around 700–720 nm, which are
associated with characteristic transitions in Cr3+ ions within the YAG crystal lattice.
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Figure 9 shows the luminescence spectrum under 6.9, 7.5 and 8.25 eV excitation. The
spectrum consists of a narrow R-line at a wavelength of 688 nm and several bands at
690, 706, 724, 762, and 780 nm. The primary luminescence mechanism (688–724 nm) for
Cr3+ ions in the YAG matrix is associated with transitions between the 2E and 4A2 states.
The long-wavelength bands at 762–800 nm are related to transitions between the 4T2 → 4A2
states [42]. These transitions occur at lower energies compared to the 2E → 4A2 transitions
and are responsible for the longer-wavelength emissions.
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This detailed emission behavior highlights the optical properties of Cr3+ ions and their
potential for various practical applications, particularly in fields requiring materials with
specific luminescent properties at low temperatures.

The excitation spectra (Figure 10) revealed several distinct peaks, the most prominent
at 6.76 eV, 5.5 eV, and 4.95 eV. These peaks indicate energy transitions in Cr3+ ions embedded
in the YAG matrix. The highest intensity is observed at an excitation energy of 6.76 eV
for all emission wavelengths, corresponding to an interband transition in the YAG matrix.
The peak at 5.5 eV is likely associated with transitions within the 3d-shell of Cr3+ ions,
which are influenced by their interaction with the YAG crystal field. Similarly, the peak at
4.95 eV may indicate transitions between states affected by the octahedral crystal field. Thus,
the observed peaks reflect the complex interplay between Cr3+ ions and the crystalline
structure of the YAG matrix, impacting the energy levels and the nature of the transitions.
The excitation spectra for 686, 704, and 723 nm follow a similar trend. The distinction lies
in the excitation spectrum at 786 nm, which is associated with differences in the excitation
mechanisms and transitions involved in the luminescence of Cr3+ ions in the YAG matrix.
It is well known that under the influence of an octahedral crystal field, the d orbitals of
Cr3+ ions split into two sets of energy levels, which are responsible for radiative transitions.
The similarity of the excitation spectra for the peaks at 686–724 nm is related to 2E → 4A2
transitions, which share identical excitation and relaxation pathways.

In [43], the relationship between increasing concentrations of Cr3+ ions in the octahe-
dral positions of the YAG crystal lattice and changes in the intensity of the crystal field
is detailed. The weakening of the crystal field causes a redshift of the transitions. It is
hypothesized that the difference in the VUV excitation spectra for the peaks at 762 and
780 nm, compared to the R-lines, is related to distinct interactions with the crystal field. In
this case, the 4T2 → 4A2 transition is predominant.

Thus, the YAG matrix and the octahedral environment of Cr3+ ions play a crucial
role in determining the excitation spectra. The interaction between the crystal field and
the d-orbitals of Cr3+ ions lead to different energy levels and transitions. In particular,
the narrow luminescence lines associated with the 2E → 4A2 transitions indicate strong
interaction with the crystal field, while the broader bands corresponding to the 4T2 → 4A2
transitions suggest a weaker interaction.
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Figure 10. Luminescence excitation spectra at 686, 704, 723 and 786 nm at 9 K. 
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Before drawing a conclusion, it should be noted that the efficiency of energy transfer
during the final excitation of impurity luminescent ions depends significantly on the
presence of point defects, many of which are created under the influence of hard radiation
of particles (fast ions, protons, neutron and/or electrons). Such radiation defects have been
well studied in various garnets [44–50] However, their role in energy transfer processes is
still practically unexplored. In a subsequent paper, we will report on the role of fast heavy
ion irradiation on the luminescent characteristics of YAG crystals and ceramics.

4. Conclusions

Samples of YAG:Eu and YAG:Cr were obtained using the solid-state synthesis method.
For both types of ceramics, pronounced excitation peaks in the VUV region are characteris-
tic, indicating high-energy transitions associated with the internal electronic levels of the
dopants and interband transitions in the YAG matrix.

The main excitation peaks of YAG are located in the range of 6–7 eV and are related
to transitions within the 4f-shell of Eu3+ and charge transfer states of Eu3+-O2−. The
spectra demonstrate a weak dependence on the crystal field of the ion matrix, resulting in
narrow spectral lines. A high energy conversion efficiency is observed, indicating effective
absorption and emission of energy by Eu3+ ions.

In the excitation spectra of YAG:Cr, broad bands appear, which are caused by transi-
tions between levels affected by strong interaction with the crystal field. This leads to a
broad spectral energy distribution and lower luminescence efficiency compared to YAG:Eu.
Significant differences in excitation spectra at various wavelengths (especially in the 786 nm
region) indicate more complex transition mechanisms and competition between radiative
and non-radiative processes. The crystal field of the YAG matrix has a strong influence
on the energy levels of Cr3+ ions, causing their splitting and the formation of multiple
transitions with varying intensities. In the case of Eu3+ ions, this influence is minimal, as
evidenced by narrow spectral bands and slight energy shifts. Optimizing synthesis condi-
tions and controlling composition allow for the tuning of their luminescent characteristics,
providing opportunities for the development of new materials with improved properties.

These conclusions highlight the importance of crystal structure and interaction with
dopants in determining the spectral characteristics of YAG-based ceramic materials and
their potential for further development and application in high-tech devices.
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