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Abstract: Cesium hexafluorosilicate (Cs2SiF6, CSF) and potassium hexafluorosilicate
(K2SiF6, KSF) compounds are suitable hosts for luminescent impurities. In this work,
the results of first-principle calculations of the basic properties of both these compounds
are discussed and compared with the available experimental and theoretical data. The
simulations were performed using the CRYSTAL23 computer code within the linear combi-
nation of atomic orbitals (LCAO) method of the density functional theory (DFT) and the
advanced hybrid DFT-HF exchange-correlation B1WC functional. A comparative study
of the structural, electronic, and elastic properties of the two materials is presented, along
with a study of the dependence of properties on external pressure in the range of 0–20 GPa.
In particular, the electronic properties with an emphasis on the effective atomic charges
(by means of Mulliken analysis) and the chemical bonding properties (by means of crystal
orbital overlap population (COOP) analysis) were addressed, with regards to the pressure
effects. The structure of the valence bands at 0 and 20 GPa was compared. The vibrational
properties of CSF and KSF were calculated, including the simulation of the one-phonon IR
and Raman spectra. The calculated Raman spectra exhibit excellent agreement with the
experimental ones. The pressure dependences of sound speeds and the Debye temperature
are evaluated.

Keywords: LED; phosphors; Cs2SiF6; K2SiF6; first-principle calculations; DFT; hybrid
functionals; atomic and electronic structure; vibrational and elastic properties; Raman and
IR spectra

1. Introduction
Red-emitting crystalline phosphors are materials that produce bright red light upon

excitation by an external energy source, such as ultraviolet or blue radiation. Hexaflu-
orosilicate compounds, A2SiF6 (where A = K, Cs), are among the potentially attractive
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phosphor materials for lighting and display applications, and for generating red photons
in phosphor-converted white light emitting diodes (pc-LEDs) [1–3].

The Mn4+ ion is the most common activator in A2SiF6 phosphors, and its electron
transitions within the d-orbital configuration produce the characteristic bright red lumi-
nescence [4]. The narrow-band emission in the red spectral region makes these materials
well-suited for generating warm white light in LED light sources [2]. The experimental data
also indicate that these materials can achieve light emission efficiency up to 120 lm/W and
a color rendering index of up to 80% [5]. Therefore, there is ongoing research to identify
fluoride host matrices and develop surface passivation procedures to satisfy some of the key
phosphor requirements, such as high thermal stability and resistance to hydrolysis [6]. The
literature data also indicates that external pressure can significantly affect the luminescence
of phosphors [7].

In this study, two alkali metal A-ions of different masses were chosen—namely, the
relatively heavy cesium (Cs) ion and the much lighter potassium (K) ion—to compare
their electronic and elastic properties and their pressure dependence. Special attention was
placed on examining the electronic and vibrational properties.

Exploring the properties of luminescent materials under varying pressure conditions
is a powerful approach to advancing their fundamental understanding and technological
applications [8]. Pressure alters the crystalline environment surrounding the luminescent
ion, leading to changes in both its optical and electronic properties. Furthermore, high
pressure can induce new stoichiometries and crystal structures with unique electronic
properties. By leveraging first-principle density functional theory calculations, researchers
can investigate the impact of pressure-induced transformations on the crystal structure,
as well as on the elastic, mechanical, optical, and electronic properties of these materials.
These investigations are particularly meaningful when directed at materials currently in
commercial use. Fundamental research has the potential to accelerate advancements in
material performance and pave the way for the discovery of new materials with significant
commercial value.

To date, a number of first-principle DFT calculations for A2SiF6 systems have been per-
formed to study the structural, electronic, optical, and mechanical properties under varying
conditions [9–15]. Plane wave VASP and CASTEP computer codes, along with PBE, SCAN,
and HSE06 functionals, were applied to model the crystalline structures, electronic states,
and pressure-dependent behavior. The calculations confirmed the structural instability
of NaKSiF6, and reproduced optical transition energies [9]. For Rb2MF6 (M = Si, Ni, Pd)
and Cs2XF6 (X = Si, Ge), simulations highlighted lattice compression, nonlinear bandgap
changes, and elastic property variations under pressure [11,12]. Doping with Mn4+ in
K2SiF6 increased the dielectric constant and optical absorption range while decreasing
the bulk modulus [10,14]. Recently, we have performed calculations of the basic proper-
ties of KSF under external pressure and without pressure using the LCAO method [15].
Such a study had not been reported in the literature. In this previous work, we provided
the first comprehensive analysis of the vibrational properties of KSF. Several hybrid DFT
functionals were employed, providing a more accurate description of the structural and
electronic properties compared to the LDA functional. In particular, the bandgap value
is ~10 eV if calculated by the hybrid DFT functional versus ~8 eV if calculated by the
LDA functional. The best agreement between the calculated structural properties and the
available experimental values from the literature was due to the hybrid B1WC functional.

In the current study, within the framework of the LCAO method, we present a compar-
ative analysis of the basic properties of CSF and KSF using first-principle DFT calculations.
The B1WC hybrid functional was employed, providing a more accurate description of
the electronic structure compared to GGA or LDA calculations, which were used in most
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of the previous studies. The analysis includes projected density of states (PDOS) and
crystal orbital overlap population (COOP) to explore bonding characteristics under pres-
sure. This work complements previous studies, which primarily have focused on the
effects of structural distortion, without specifically addressing trends in electron charge
density redistribution. Additionally, we extend the pressure analysis to include elastic
constants, Young’s modulus, and Poisson’s ratio, highlighting the pressure-driven changes
in structural rigidity. Further, we present the results of our calculations and analysis of the
vibrational properties, including simulated Raman and IR spectra. The calculated Raman
spectra are compared with the experimental data.

2. Materials and Methods
Both the CSF and KSF crystals have the same face-centered cubic (fcc) crystal struc-

ture, characterized by the Fm-3m space group symmetry (Nr. 225). In this structure, the
A-cations (either Cs or K) are surrounded by twelve fluorine anions, while the Si cations
are coordinated by six fluorine anions, which create a perfect octahedron. The conven-
tional (crystallographic) unit cell of this cubic lattice contains 36 atoms, which are in the
following Wyckoff positions: A at 8c (1/4, 1/4, 1/4), Si at 4a (0, 0, 0), F at 24e (x, 0, 0).
Figure 1 illustrates the ideal crystal structure of A2SiF6, highlighting the SiF6 octahedra and
conventional cubic unit cell. Note that the SiF6 octahedra are situated at the corners and
face centers of the cube.

Figure 1. Sketch of the ideal crystal structure and crystallographic unit cell (36 atoms) of A2SiF6

(where A is Cs or K cation) [15]. A-ions are orange balls, Si—blue, F—grey. The unit cell is presented
by a cube drawn with black lines.

The computational methods applied in our calculations are described in detail in our
previous paper [15]. Here, we provide only a brief overview, focusing on key aspects and
specific details relevant to the present calculations.

The first-principle (ab initio) computations of CSF and KSF crystals were performed
within the LCAO method, as implemented in the CRYSTAL23 computer code [16,17]. We
consider and compare here the calculated structural, electronic, elastic, vibrational, and
dielectric properties of crystals with fully optimized geometry (with particular attention to
the electronic properties). For some of the chosen properties, and for the Debye temperature,
the dependences on external hydrostatic pressure (0–20 GPa) were studied, which allows
us to estimate how changes in interatomic distances affect the basic properties of crystals.
In this case, the optimized structure at each pressure was used for the calculations. Note
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that the CRYSTAL23 code, in addition to geometry optimization, also gives possibility to
calculate the elastic properties of crystals under external pressure [17–19]. Additionally, the
simulations of the one-phonon Raman and infrared (IR) spectra of crystals were performed.

In our previous study [15], we discussed and compared several basis sets and hybrid
functionals for simulating the properties of the KSF crystal. Therefore, we have adopted
the recommendation of this previous study to select appropriate methods for comparing
CSF and KSF. The all-electron TZVP_2012 basis sets of Gaussian type functions were used
for description of K, Si, and F atoms [15,20], while the TZVP_rev2 Gaussian basis set with
pseudopotential was used to describe Cs atoms [21]. All these basis sets are available on the
CRYSTAL23 Basis Sets Library web site [22]. The B1WC global hybrid exchange-correlation
functional was employed for calculations. This single-parameter hybrid B1WC functional
combines the Wu–Cohen WCGGA exchange functional with 16% of Hartree–Fock (HF)
exchange and the Perdew–Wang PWGGA correlation functional [17,23]. It should be noted
that the B1WC functional and the TZVP_2012 basis sets were previously chosen as optimal
combination for the KSF simulation [15].

After geometry optimization, a vibrational analysis was performed for the considered
systems. The frequencies of the transverse optical (TO) vibrational modes and vibrational
contribution to the dielectric tensor were calculated at the Γ-point (in the center of the
first Brillouin zone) within the harmonic approximation. Note that the complex dielectric
function ε(ν), depending on the frequency ν and vibrational modes, is the sum of the
electronic (high-frequency) εel and ionic (vibrational) εvib components: ε(ν) = εel + εvib(ν) [15].
CRYSTAL23 allows us to calculate both of these components, as well as the static dielectric
tensor (static dielectric constant, in our case) ε(0) with an estimate of both the electronic
and ionic contributions. The integrated intensities for the IR- and Raman-active vibrational
modes were calculated. The one-phonon Raman and IR absorbance spectra, generated by
the corresponding TO vibrational modes, were also simulated (see the details in Ref. [15]).

3. Results and Discussion
3.1. Selected Structural and Electronic Parameters

The basic CSF and KSF parameters calculated for fully relaxed systems are summarized
in Table 1. This table includes the following data: lattice constant a, non-dimensional free x
coordinate of the F ion (Wyckoff position 24e), distances between ions (Si–F, A–F), band
gap Eg, Mulliken (effective atomic) charges of ions, and refractive index n, determined as
the square root of the electronic (high-frequency) dielectric constant. Experimental values
(if available) of the corresponding parameters are provided in parentheses.

Table 1. Calculated lattice constant a, dimensionless free x coordinate of the F ion (Wyckoff position
24e), interionic distances (Si–F, A–F), band gap Eg, Mulliken charges of ions q, and refractive index
n of CSF and KSF at 0 GPa, along with the corresponding available experimental data (values in
the parenthesis).

Cs2SiF6 K2SiF6

a, Å 8.866 (8.890 [12]) 8.086 (8.134 [13], 8.046 [24])
x 0.1919 0.2100 (0.2095 [24])
Si–F, Å 1.702 (1.695 [12]) 1.698 (1.683 [13])
A–F, Å 3.176 2.877 (2.897 [13])
Eg, eV 10.39 9.73
q(A) (Cs or K), |e| 0.922 0.852
q(Si), |e| 1.809 1.807
q(F), |e| −0.609 −0.585
n 1.37 (1.38–1.39 [25]) 1.32 (1.34 [13])
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As can be seen from Table 1, the calculated structural parameters of CSF are in excellent
agreement with the available experimental data. The relative difference in the lattice
constant values is only −0.27%, while in the lengths of the Si–F bond it is 0.41%. For
the KSF crystal, the discrepancies between the calculated and experimental structural
parameters are as follows: −0.59% (or 0.50% compared to the low-temperature data from
Ref. [24]) for the lattice constant, 0.89% for the Si–F distance, and −0.69% for the K–F
distance. Thus, the errors in calculations of the mentioned structural parameters are less
than 0.9% for both compounds. The achieved accuracy is significantly better than that
of plane wave calculations using the LDA and GGA functionals [10,12,13,26,27], and is
comparable to plane wave calculations with PBE0 and HSE06 hybrid functionals [27].

The values of x parameters, exhibited in Table 1, are free coordinates of the F ions
(Wyckoff position 24e) in the CSF and KSF crystals, obtained after full geometry optimiza-
tion. For the KSF crystal, the calculated value of this parameter coincides very well (0.24%)
with experimental one measured at low temperature (110 K) [24].

Our calculations suggest 10.39 eV for the indirect band gap for the CSF crystal. How-
ever, the direct band gap at the Γ-point differ from this value only by 0.03 meV. In contrast
to this, the calculated band gap for KSF is direct, and its value is a little smaller, 9.73 eV.
This band gap is very close to that found for KSF with the HSE06 hybrid functional and
plane wave calculations [27]. In general, calculations with hybrid functionals predict sig-
nificantly larger band gap values than LDA and GGA functionals [10,12,13,26–28], which
we have already discussed in Ref. [15]. Keeping in mind that LDA and GGA calculations
tend to underestimate the band gaps, the results obtained in our calculations seem quite
reasonable. Since no reliable experimental data on the CSF and KSF band gaps were
found, it is unfortunately not possible to directly compare the calculated band gaps with
the experiment.

The Mulliken effective charges of Cs and K ions in Table 1 confirm the ionic nature
of the A-site ions, as these charges are close to the formal charge of +1|e|. These ions
donate about 90% of the charge of the valence electron to form a bond. Nevertheless, q(Cs)
is a bit larger in the comparison with q(K), which leads to the difference between the two
materials reflected in the calculated electronic properties (see Sections 3.2 and 3.3 below).
The calculated Mulliken charge of Si ions in both materials is about +1.8|e|, which is
~45% of the formal ionic charge of Si4+ ion (formal oxidation state +4) and is related to
partial covalence of the Si–F bonds. Each F ion acquires a charge of about −0.6|e| in both
materials. It is obvious that, for both compounds, the degree of ionicity for the A–F bond is
much higher than for the Si–F bond. The presented analysis of the calculated ionic charges
is in line with the values of the electronegativity of the elements. The most widely used is
the thermochemical Pauling scale, where electronegativity has units of eV1/2. According to
this scale, the electronegativity of the elements included in CSF and KSF is X(Cs) = 0.79,
X(K) = 0.82, X(Si) = 1.90 and X(F) = 3.98 [29,30]. Here the electronegativity of Cs and K is
significantly different from that of fluorine; thus, they are supposed to form Cs–F and K–F
ionic bonds, whereas Si has the electronegativity lying in-between. Additionally, let us
use the simple heuristic formula proposed by Pauling [29,31,32] to estimate the degree of
ionicity of the interatomic bond (or, originally called the partial ionic character of a single
bond) between elements E1 and E2 as follows:

f(E1–E2) = 1 − exp{−0.25·[X(E1) − X(E2)]2}, (1)

where X(E1) and X(E2) are the electronegativities of the corresponding elements. Cal-
culations using Equation (1) yield the following degree of ionicity of bonds: f(Cs–F) =
92.1%, f(K–F) = 91.8%, f(Si–F) = 66.1%. Overall, these results indicate that the character
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of the Cs–F and K–F bonds is almost entirely ionic, whereas the Si–F bonds contain about
34% covalency.

The experimental value of the refractive index n for CSF, which in Table 1 is given for
λ = 589.3 nm, coincides very well with the calculated value. In general, the difference be-
tween the calculated and experimental values of the refractive indices for both compounds
does not exceed 1.5% (see Table 1).

3.2. Effect of External Pressure and Elastic Properties

To evaluate how the external hydrostatic pressure affects the main structural, elec-
tronic, and elastic properties of CSF and KSF, we performed calculations of the dependences
of these parameters on the pressure in the wide range of 0–20 GPa. The graphs of the de-
pendences of the lattice constants on pressure are presented in Figure 2. These dependences
could be successfully approximated by the second-order polynomial functions, that allows
for reliable values of the studied parameters in the entire range of the considered pressures.
Figure 2 reveals that, as expected, the lattice constants decrease with increasing pressure,
and these dependences are qualitatively similar for both materials. However, there is a
slight difference. The CSF lattice constant decreases by 11.4% when the pressure increases
from 0 to 20 GPa, whereas the KSF lattice constant decreases by only 10.6%. The somewhat
smaller change of the KSF lattice constant under external pressure implies a slightly greater
rigidity of its crystal structure (see below the discussion of the elastic properties of CSF and
KSF). Note that a decrease in the lattice constant by ~11% leads to a decrease in the crystal
volume by ~30%.

Figure 2. Dependences of the lattice constants for CSF and KSF on external pressure (filled markers)
and the corresponding fitting (dotted lines).

Let us consider the interionic distances in CSF and KSF. As can be seen from Table 1,
the Cs–F and K–F distances at ambient pressure are almost twice the Si–F distance. Figure 3
shows that all interionic distances, as well as the lattice constants, decrease monotonically
with increasing pressure. Nevertheless, the rate of decrease of these parameters differs. We
have already drawn attention in Ref. [15] to the fact that, in KSF, the rigidity of the Si–F
bond is significantly higher than the rigidity of the K–F bond; the decrease of interionic
distances at 20 GPa is 1.2% and 11.1% for the Si–F and K–F bonds, respectively. The same
tendency also holds for the CSF crystal, in which, at the external pressure of 20 GPa, the
Si–F distance decreases by 1.1%, and the Cs–F distance decreases by 12.1%. This reduction
of interionic distances means that the volume of SiF6 octahedra decreases by ~3%, while the
volume of the CsF12 polyhedra decreases by ~32%. Thus, it is essential that the decrease in
the volume of the unit cell of CSF and KSF with pressure occurs mainly due to the decrease
in the size of the CsF12 and KF12 polyhedra, respectively. The difference in rigidity of
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the Si–F and A–F bonds could be explained by the fact that the nature of the Si–F bonds,
unlike the A–F bonds, includes a significant contribution of covalence (see the discussion in
Sections 3.1 and 3.3). If we compare the CSF and KSF structures, we can conclude that the
rate of decrease of distances between the Cs and F ions in CSF is higher than between the K
and F ions in KSF, while the rate of change of the Si–F distance is almost identical in both
crystals. This fact could again indicate a slightly greater rigidity of the KSF crystal structure.

Figure 3. The pressure dependence of the interionic distances in the CSF and KSF crystals along with
the corresponding fitting (dotted lines): (a) Si–F bonds; (b) Cs–F and K–F bonds.

The calculations reveal that both the CSF and KSF materials are wide-gap insulators
(see Table 1). At the same time, the band gap of both crystals increases monotonically with
pressure, but the behavior of these dependences is different (Figure 4) in two materials. The
KSF band gap increases by 18.2% in the pressure range of 0–20 GPa, showing only minimal
signs of slowing growth. In contrast to this, the CSF band gap increases slowly by only
4.4%, and this dependence demonstrates a clear trend of slowing down. Both dependences
are perfectly described by third-order polynomial functions (see Figure 4). Note that, over
the entire pressure range, the calculations yield indirect and direct band gaps for CSF and
KSF, respectively. At the same time, direct band gaps of CSF at various pressures differ
from indirect ones at the same pressures by the minimum values (see Section 3.1).

Figure 4. Band gap dependences of CSF and KSF on the external pressure and the corresponding
fitting (dotted lines). Calculations give an indirect band gap for Cs2SiF6 and a direct band gap for
K2SiF6 in the considered pressure range.

Table 2 demonstrates the change of Mulliken charges of ions in CSF and KSF when the
external pressure is applied. The calculated charges are in line with a high degree of ionicity,
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as previously discussed for zero pressure. That is, the alkali metal atoms exhibit charges
close to the formal value of 1|e|, indicating the ionic character of the bonds. In both
compounds, charges (in absolute value) of A-cation and fluorine decrease monotonically
with increasing pressure. The charges of Cs and K change by 0.095|e| and 0.078|e|,
respectively, while the charges of the F ions change by 0.034|e| in CSF and by 0.024|e|
in KSF. This conclusion reveals a completely opposite tendency when compared with
the results of plane wave calculations using the LDA and GGA functionals [12,13] for
the Mulliken charges, which indicated the charges (in absolute value) of A- and F-ions
increased with increasing pressure. The complex material response to the pressure does not
allow us to conclude which of the two trends should take place. It is worth noting that the
calculation of Mulliken charges using the LCAO basis set is a more natural combination.
Considering that our present results and those reported in [12,13] regarding the pressure
dependences of interionic distances and lattice parameters show qualitative similarity, we
plan to incorporate the calculation of Bader charges for the plane wave calculations in a
future study. At the same time, the changes in the charges of Si ions in both CSF and KSF
do not exceed 0.01|e|; thus, to a first approximation, they can be considered more or less
constant. In general, such behavior of ionic charges indicates that, with increasing pressure,
the ionicity of bonds (at least the A–F bonds) slightly decreases.

Table 2. Mulliken (effective atomic) charges (in |e|) of ions depending on the external pressure.

Pressure,
GPa

Cs2SiF6 K2SiF6

Cs Si F K Si F

0 0.922 1.809 −0.609 0.852 1.807 −0.585
4 0.899 1.801 −0.600 0.824 1.802 −0.575
8 0.880 1.798 −0.593 0.807 1.803 −0.569

12 0.861 1.796 −0.586 0.793 1.807 −0.566
16 0.843 1.797 −0.580 0.783 1.811 −0.563
20 0.827 1.799 −0.575 0.774 1.817 −0.561

Figure 5 visualizes the above-mentioned trend. This figure shows the changes of the
pressure dependence of the total charges of the three types of ions (Cs or K, Si, F) forming
the formula unit for CSF (Figure 5a) and KSF (Figure 5b). The crystal formula units include
the two Cs or K ions, one Si ion, and six F ions. Figure 5 reveals that the A-cations charges
become less positive, the charges on the fluorine become less negative, and the charges on
the silicon remain practically unchanged. Note that the sum of all charges at any pressure
in Figure 5 is zero, to maintain the electric neutrality of the crystal lattices.

The pressure effect on certain CSF elastic properties is seen in Table 3. CSF has a cubic
crystal system, so the symmetric elastic tensor of CSF has three independent non-zero
components C11, C12, and C44. These elastic constants, along with bulk modulus (B), shear
modulus (GH), Young’s modulus (EH), and Poisson’s ratio (νH) in the Hill averaging scheme,
are collected in Table 3. Note that the Hill moduli are obtained by averaging the Voigt (as
an upper limit) and the Reuss (as a lower limit) respective moduli [33,34], and the Voigt,
Reuss, and Hill bulk moduli of CSF (and KSF) are equal.

We begin by outlining some qualitative insights. Our calculations confirm that the
necessary and sufficient Born stability criteria for the cubic crystalline systems [35]

C11 − C12 > 0, C11 + 2C12 > 0, C44 > 0 (2)

are fulfilled for the CSF crystal. The same conclusion applies to the KSF crystal, based on
the evaluation of its elastic constants (see Ref. [15]). An analysis of Table 3 reveals that
all elastic constants and moduli of CSF presented in the table increase with increasing
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pressure. The elastic properties of KSF demonstrate qualitatively the same behavior [15].
Moreover, both crystals, CSF and KSF, satisfy the condition C12 > C44 for all pressure values.
This relation is typical for ionic structures; whereas, for covalent compounds, the opposite
relation C12 < C44 is valid [12]. From this point of view, both crystals can predominately
be classified as ionic compounds. A comparison between the calculated values of the
elastic constants and the moduli of CSF (Table 3) and KSF (Table 4 in Ref. [15]) reveals that
the values of all elastic quantities, with the exception of νH, are larger for KSF. Thus, the
calculation of elastic properties confirms that the KSF crystal is more rigid than the CSF
crystal. This conclusion is also consistent with a well-established observation that, in cubic
crystals, the values of elastic parameters increase as the lattice constant decreases.

Let us consider in more detail the Poisson ratio νH. At zero external pressure, the νH

of KSF is slightly higher than that of CSF: 0.271 vs. 0.268. However, already, at 4 GPa, the
situation turns out to be the opposite. With a further increase in external pressure, the νH

of CSF increases much faster than KSF and, at 20 GPa, the increase in the Poisson ratio of
CSF is 58%, versus 33% for the Poisson ratio of KSF. To the best of the authors’ knowledge,
this is the first study of the pressure dependences of the Poisson ratio for CSF and KSF, so
it is not possible to compare the obtained results with other calculations.

Figure 5. The pressure induced changes in the total charges of three types of ions (Cs or K, Si, F)
forming the formula unit of the compounds relative to the ambient pressure: (a) CSF; (b) KSF. The
lines are shown only as a guide to the eyes.

Table 3. Effect of pressure on the elastic constants (C11, C12, C44), bulk modulus B, Hill shear modulus
GH, Hill Young’s modulus EH (all in GPa), and dimensionless Hill Poisson’s ratio νH of CSF.

Pressure, GPa C11 C12 C44 B GH EH νH

0 33.10 12.48 10.80 19.35 10.60 26.89 0.268
4 55.48 33.60 14.78 40.90 13.10 35.52 0.355
8 73.83 51.56 16.45 58.98 14.07 39.10 0.390
12 91.70 68.62 18.14 76.31 15.13 42.58 0.407
16 109.66 85.55 19.92 93.59 16.29 46.18 0.418
20 128.12 102.40 22.09 110.98 17.78 50.64 0.424

Now, let us analyze other elastic parameters of CSF (Table 3) and compare them with
the corresponding parameters of KSF. As previously mentioned, for all pressures, these
elastic parameters for CSF are less than those of KSF. However, such a simple conclusion
does not hold for the pressure dependent rate of growth of elastic parameters. When the
pressure increases from 0 to 20 GPa, the elastic constant C11 for CSF increases by 287%,
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and for KSF by 310%; for C12, 721% (CSF) vs. 589% (KSF); for C44, 105% vs. 286%; for B,
474% vs. 435%; for GH, 68% vs. 208% and for EH, 88% vs. 229%. For both materials, the
elastic constants C12 increase most rapidly, followed by the bulk moduli B. It is clear that,
for the six considered parameters, two (C12 and B) increase faster in CSF. The situation with
the elastic constant C12 is even more interesting. If, at 0 GPa, the value of this constant
for CSF is smaller than for KSF (12.48 GPa vs. 14.94 GPa), then at 20 GPa they are already
practically equal (102.40 GPa vs. 102.94 GPa).

The effect of isostatic external pressure on the elastic properties of KSF was considered
in Ref. [10]. Three elastic constants, bulk and shear moduli were calculated at different
pressures using the VASP plane-wave calculation package and GGA PBE functional. The
qualitative conclusion in this paper is the same: all considered elastic parameters increase
with increasing pressure.

3.3. Electronic Properties

Firstly, the electronic structure is analyzed using the atom projected density of states
(PDOS) for pressures of 0 and 20 GPa (Figure 6). The bottom of the conduction band (CB),
marked by the dot–dashed line, is formed mainly by A-cation (Cs or K) states. Deeper
analysis of the CB bottom revealed an intermixed contribution from corresponding A-cation
and Si s-states. For both crystals, the following common properties can be clearly seen from
the calculated PDOS: (a) the valence band (VB) consists of several sub-bands, spanning the
energy range between 0 and −6 eV; (b) the F-p states dominate the very top of the VB at
0 eV, marked by a dashed line (Fermi level). However, a qualitative difference between
the two materials still exists in the properties of sub-bands at 0 GPa: (i) the states forming
the top of the VB in CSF, in addition to the F-p states, include a contribution from the Cs-p
states (Figure 6a,c), which becomes more pronounced in the deeper sub-bands; (ii) the Si
contribution increases in the deeper sub-bands in KSF; (iii) smaller number of and broader
sub-bands in CSF than in KSF; (iv) the deep sub-band at -6 eV is mainly due to the strong
inter-mixture of Si and F states in CSF. Moreover, at 20 GPa for CSF, the Cs-p contribution
increases considerably, almost reaching that of the F-p states (Figure 6c) in the energy range
between 0 and −0.5 eV. For both crystals, expansion and partial merging of the sub-bands
is observed at 20 GPa (Figure 6c,d).

Secondly, to discuss the nature of the Si–F and A–F bonds, the electronic subsystem
is analyzed using crystalline orbital overlap population (COOP) [17,36] and the electronic
charge density difference (i.e., the difference between crystalline and superposition of non-
interacting neutral atomic densities) plots (Figures 6 and 7). The present COOP analysis is
analogous to a more popular COHP (crystalline orbital Hamilton population) analysis for
the plane wave calculations [37]. As mentioned above for the atomic charges, the methods
requiring local basis are less suitable for the plane wave calculations. The COOP calculated
from the overlap matrix and coefficients of linear combination of atomic orbitals is natural
for the LCAO basis set and calculations. However, both approaches must produce close
results for accurate calculations.

The COOP analysis for both CSF and KSF shows that only bonding Si–F orbitals
(positive COOP values) are present below the Fermi level at 0 and 20 GPa (Figure 6). The
charge density difference plot for the Si–F plane shows that electrons are localized at the
Si–F bond (red regions), thus forming rigid directional covalent bonding (Figure 7a,c,e,g)
independently of pressure. Also, the COOP of the Si–F bond is insensitive to the pressure,
which is reflected in an unchanged bonding character of the Si–F bond at 0 and 20 GPa for
the two materials. It is also in line with and explains the almost constant Si atomic charge
as a function of pressure (Figure 5).
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Figure 6. Atom projected density of states (PDOS) and crystal orbital overlap population (COOP)
analysis for the CSF and KSF crystals in the cubic Fm-3m phase: (a) CSF at 0 GPa; (b) KSF at 0 GPa;
(c) CSF at 20 GPa; (d) KSF at 20 GPa. Fermi levels and the bottom of conducting bands are marked
with dashed and dot–dashed lines, respectively. Bonding (positive) and anti-bonding (negative)
regions are indicated in the COOP plots.
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Figure 7. Charge density difference plots for the CSF and KSF crystals: (a,b) CSF at 0 GPa; (c,d) KSF
at 0 GPa; (e,f) CSF at 20 GPa; (g,h) KSF at 20 GPa. We distinguish the Cs–F (b,f), K–F (d,h), and Si–F
(a,c,e,g) planes. Blue and red depict electron density decrease (from −0.010 |e|/bohr3) and increase
(up to 0.010 |e|/bohr3) with step size of 0.001 |e|/bohr3, respectively.

The COOP analysis of the A–F (A = Cs or K) bond demonstrates that, contrary to the
Si–F case, both bonding and anti-bonding orbitals are now observed below the Fermi level
(Figure 6). In particular, the anti-bonding orbitals are formed in the region close to the
Fermi level, which is somewhat explained by a longer A–F bond length in comparison with
the Si–F bond (Figure 3). These facts confirm the previous conclusion regarding the lower
rigidity of the A–F bonds compared to the Si–F bonds. At 20 GPa, the anti-bonding A–F
orbitals become more dominant, especially for CSF, as seen in Figure 6c,d. The bonding
Cs–F orbitals, which are well seen for CSF at deeper energies, stem from a larger number
of electrons and an involvement of Cs d-electrons in comparison with the K–F bond. The
charge density difference plot for the A–F plane at 0 GPa shows spherical charge distribution
around A- and F-ions, which is characteristic of ionic bonding (Figure 7b,d). On the one
hand, at 20 GPa less charge is transferred from the A-ion to the F-ion than at 0 GPa (see
the Mulliken charges listed in Table 2 and Figure 5). On the other hand, the electrons are
localized in approximately 30% smaller volumes of the CsF12 and KF12 polyhedra due to
the compressed crystal structure, which leads to an increase in the charge density on F- and
A-ions (Figure 7f,h).

3.4. Vibrational and Dielectric Properties

By default, the CRYSTAL code performs calculations for a primitive unit cell, which
for both CSF and KSF consists of n = 9 atoms. Therefore, both these systems have 3n = 27
normal lattice vibrations. Three of them are acoustic vibrations, and the others are optical
vibrations. In both structures, theses 24 optical vibrations are distributed over 9 transverse
optical (TO) vibrational modes. TO modes with their frequencies ν0, as calculated in this
study for the CSF and KSF crystal, are presented in Tables 4 and 5, respectively. The tables
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reveal that, for each crystal, the set of modes is identical: F1g + 2F2g + 3F1u + F2u + Eg

+ A1g, i.e., it includes seven triply degenerate modes (F-modes), one doubly degenerate
mode (Eg), and one non-degenerate mode (A1g). In both cases, three modes are IR-active
(F1u modes), four are Raman-active (2F2g + Eg + A1g), and two are silent modes (F1g and
F2u), i.e., neither IR- nor Raman-active. Note that the IR- and Raman-active modes are
strictly separated in both crystals (no one mode is both IR- and Raman-active), which is
consistent with symmetry principles and the mutual exclusion rule for crystals with an
inversion center. Naturally, the frequencies of modes in CSF and KSF are different. Firstly,
it is notable that the F2g and F1g modes, which have the lowest frequencies, “exchange
places” in the CSF and KSF systems. In CSF, the Raman-active F2g mode has the lowest
frequency (72 cm−1); while, in KSF, the silent F1g mode is the lowest-frequency mode. In
general, we conclude that the frequencies of TO modes in CSF are lower than in KSF, which
is consistent with the presence of the heavier Cs atom in the CSF structure.

Table 4. Calculated frequencies ν0 of transverse optical (TO) vibrational modes at the Γ-point of
the CSF Brillouin zone (BZ). Calculated isotopic shift of frequencies (∆Cs, ∆Si, ∆F) after increasing
the relative masses of the corresponding atoms (Cs, Si, or F) in CSF by 10%. Letters A and I in
the third column indicate whether the mode is, respectively, active (A) or inactive (I) for IR and
Raman scatterings.

Mode Frequency
ν0, cm−1

IR–Raman
Activity

Cs Isotopic
Shift ∆Cs,

cm−1

Si Isotopic
Shift ∆Si,

cm−1

F Isotopic
Shift ∆F,

cm−1

F2g 72.0 I–A −3.3 0.0 0.0
F1g 104.2 I–I 0.0 0.0 −5.1
F1u 107.5 A–I −1.7 −0.7 −2.8
F2u 265.1 I–I 0.0 0.0 −12.9
F2g 388.0 I–A 0.0 0.0 −18.9
F1u 464.5 A–I 0.0 −4.2 −19.2
Eg 480.4 I–A 0.0 0.0 −23.5

A1g * 640.2 I–A 0.0 0.0 −31.2
F1u 742.3 A–I 0.0 −23.4 −12.6

* Note that this mode is denoted as Ag in the CRYSTAL output file.

Table 5. Calculated frequencies ν0 of transverse optical (TO) vibrational modes at the Γ-point of
the KSF Brillouin zone (BZ). Calculated isotopic shift of frequencies (∆K, ∆Si, ∆F) after increasing
the relative masses of the corresponding atoms (K, Si, or F) in KSF by 10%. Letters A and I in
the third column indicate whether the mode is, respectively, active (A) or inactive (I) for IR and
Raman scatterings.

Modes Frequency
ν0, cm−1

IR–Raman
Activity

K Isotopic
Shift ∆K,

cm−1

Si Isotopic
Shift ∆Si,

cm−1

F Isotopic
Shift ∆F,

cm−1

F1g 71.9 I–I 0.0 0.0 −3.5
F2g 130.8 I–A −6.3 0.0 0.0
F1u 137.0 A–I −4.2 −0.4 −2.0
F2u 263.6 I–I 0.0 0.0 −12.9
F2g 397.6 I–A 0.0 0.0 −19.4
F1u 470.5 A–I 0.0 −4.6 −19.1
Eg 491.8 I–A 0.0 0.0 −24.0

A1g * 649.5 I–A 0.0 0.0 −31.7
F1u 753.7 A–I 0.0 −23.2 −13.2

* Note that this mode is denoted as Ag in the CRYSTAL output file.
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The simulated IR and Raman spectra of CSF and KSF (Figure 8) confirm the latter
conclusion: the peaks in the CSF spectra are slightly shifted to lower frequencies. Since
all IR and Raman modes are well separated in frequency in the two crystals (Tables 4
and 5), distinct individual peaks are observed in the spectra, each generated by only one
vibrational mode.

Figure 8. Simulated one-phonon IR and Raman spectra of CSF and KSF: (a) IR absorbance spectra;
(b) Raman spectra.

Let us first consider the IR spectra (Figure 8a). Three IR-active F1u modes form three
peaks in each spectrum. An analysis of atom displacements in the IR-active modes leads to
qualitatively identical conclusions for both materials. The dominant peak corresponds to
the most high-frequency vibrational mode (742 cm−1 for CSF and 754 cm−1 for KSF). The Si
atoms demonstrate maximum displacements in this mode and take part in vibrations along
all axes. The fluorine atoms also contribute to this peak, but each of them vibrates mainly
along only one axis. The A-atoms do not oscillate in this mode. The middle peaks (465 and
471 cm−1 for CSF and KSF, respectively) arise due to vibrations of F and Si atoms along all
axes. Again, the A-atoms do not vibrate in these modes. Finally, the peaks, associated with
the low-frequency IR-active mode (108 cm−1 for CSF and 137 cm−1 for KSF). All atoms
vibrate in this mode along all axes. Note that the relatively heavy atoms (Cs and K) take
part only in the lowest-frequency vibrations. However, some differences are observed in
the character of vibrations of Cs and K atoms. In this mode, K atoms exhibit the largest
displacements compared to the displacements of Si and F atoms in KSF. On the contrary,
the displacements of Cs atoms are smaller than the displacements of Si and F atoms in CSF.
This fact can be explained by the difference in the masses of the Cs and K atoms.

Now, we apply another method for analyzing the contribution of selected atoms to
the vibrational mode—the isotopic substitution method, which is implemented in the
CRYSTAL code [17] and makes it possible to modify the atomic masses of specific atoms.
We compare the vibrational frequencies calculated with standard relative atomic masses
with those obtained using the new, higher, isotopic masses. The idea is that an increase of
atomic masses leads to a decrease of vibrational frequencies, but this decrease depends on
a contribution of a corresponding atom (or group of atoms) to the particular vibrational
mode. By comparing the vibrational modes frequency changes, the relative contributions
of atoms to the different modes can be determined. We have used this technique previously
in the study of KSF vibrational properties [15], and when investigating the point defects
in diamonds [38,39]. In this study, we increased the relative masses of the CSF atoms by
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approximately 10%, and calculated the resulting isotopic shift in the frequencies of the
vibrational modes. Calculations were performed for three different cases: (i) relative atomic
masses of all Cs atoms were changed from 133 to 146; (ii) mass of Si atom was changed
from 28 to 31; (iii) masses of all F atoms were changed from 19 to 21. The results of these
calculations are collected in the last three columns of Table 4 (for CSF) and Table 5 (for KSF).
In these tables, for example, the data in the ∆Si column show the change in the frequencies
(∆ = ν − ν0) of vibrational modes due to increasing the mass of the Si atom.

To begin, let us summarize the data presented in Tables 4 and 5, focusing on the atoms
composing the CSF and KSF crystals. The tables reveal that the Cs and K atoms vibrate
only in two low-frequency vibrational modes, F2g (Raman-active mode) and F1u (IR-active
mode). The Si atoms take part in the vibrations of three F1u modes (all these modes are
IR-active). Herewith, the contribution of the Si atoms to the highest-frequency mode is
greater than to the other two modes. Finally, the F atoms oscillate in all modes except one
Raman-active F2g mode (72 cm−1 in CSF and 131 cm−1 in KSF) with the largest contribution
to the Raman-active A1g mode (640 cm−1 in CSF and 650 cm−1 in KSF).

Now, we return to the consideration of the IR-active modes. The isotopic shifts of
the frequencies of specific modes fully confirm the estimates obtained from the atom
displacement analysis. All atoms contribute to the first peak in the IR spectrum of CSF
(associated with the vibrational mode of 108 cm−1), with the largest contribution from the
F atoms. At the same time, of all the KSF atoms, the K atoms give the greatest contribution
to the formation of the first peak in the IR spectrum. The second peak in the IR spectra of
CSF and KSF arises due to vibrations of the Si and F atoms with the maximum contribution
coming from the F atoms. The third (dominant) peak of the IR spectra is also contributed
by the Si and F atoms, but the maximum contribution comes from the Si atom vibrations.

A few words about the silent modes from Tables 4 and 5. The two silent modes in the
CSF and KSF crystals are formed by vibrations of the F atoms only; the Si and K atoms
remain stationary. The vibration of each F atom occurs in one plane.

Now, we discuss the Raman-active vibrational modes (Tables 4 and 5). Like the silent
modes, all Raman-active modes in the CSF and KSF crystals are exclusively associated with
oscillations of the identical atoms: the low-frequency Raman mode (72 cm−1 for CSF and
131 cm−1 for KSF) with vibrations of the Cs or K atoms, and for the other three Raman
modes, with F atom vibrations. An atom displacement analysis reveals that the Cs atoms
vibrate along all axes in the 72 cm−1 mode. In the CSF crystal, the vibrations of each F atom
in the 388 cm−1 mode occur in one plane, while in the 480 and 640 cm−1 modes, along
one axis. The same conclusions are drawn for the corresponding atoms and modes in the
KSF crystal (the vibrational properties of the KSF crystal were discussed in detail in our
paper [15]).

Let us look at to the simulated Raman spectra (Figure 8b). In the case of the KSF
crystal, four well-separated Raman modes generate four distinct peaks in the spectrum. In
contrast to this, only three peaks are visible in the Raman spectrum of CSF, and it seems
like the peak corresponding to the 480 cm−1 mode is missing. In fact, the peak is present,
but it has very low intensity; the calculated intensity of the Raman line corresponding to
the 480 cm−1 Raman-active mode is only 0.3% of the intensity of the line corresponding to
the dominant peak in the spectrum.

It is interesting to compare the theoretically calculated Raman spectra (Figure 8b)
with the experimental ones. The experimental Raman spectra of pure CSF and KSF mea-
sured at 300 K are available in Ref. [40]. Both experimental spectra consist of three peaks.
Unfortunately, the spectra were measured in the frequency range from 200 to 700 cm−1.
Therefore, it is not possible to discuss our calculated low-frequency peaks (72 cm−1 for
CSF and 131 cm−1 for KSF). However, above 200 cm−1, the calculated spectra are in very
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good agreement with the experimental ones. In the experimental CSF spectrum, the peaks
are located at the following frequencies: 407, 474, and 654 cm−1 (compared with the data
for Raman-active modes in Table 4). The experimental spectrum of KSF exhibits peaks at
slightly higher frequencies compared to the spectrum of CSF: 410, 480, and 658 cm−1. The
calculated Raman spectra of KSF and CSF demonstrate the same trend (see Figure 8b, and
Tables 4 and 5). The deviation between the positions of the corresponding experimental
and calculated peaks does not exceed 5% for CSF and is less than 3% for KSF. Moreover,
the relative peak intensities in the experimental spectra qualitatively coincide with relative
intensities of peaks in the simulated spectra. The most intensive peaks in all (experimental
and theoretical) spectra fall in the region of ~650 cm−1; in addition, as stated in Ref. [40], the
peaks in the region of ~480 cm−1 are very weak. Another experimental Raman spectrum of
KSF–Mn4+ measured at ambient pressure is presented in Ref. [41]. This spectrum consists of
four peaks at ~120, ~405, ~475, and ~655 cm−1, with a clearly dominant peak at ~655 cm−1.
It is obvious that the experimental frequency values, which coincide very well with the
calculated ones (Table 5), as well as the presence of a dominant peak at the corresponding
frequency, indicate excellent agreement between the theoretical and experimental spectra.
It should be noted that the authors of [40,41] claim that three high-frequency peaks in the
Raman spectra are associated with vibrations of the SiF6 octahedra, which also coincides
with the results of our analysis of atomic vibrations in the Raman-active modes of CSF
and KSF.

Now, we briefly discuss the important dielectric parameter of system—the static
dielectric tensor, which is closely related to the system vibrational properties. In the case of
defect-free CSF and KSF, the static dielectric tensor is just a constant ε(0), since the three
diagonal elements of the second rank tensor are equal, and the off-diagonal elements are
zero. The static dielectric constant (static relative permittivity) ε(0) is the sum of electronic εel

and vibrational εvib(0) components. The electronic (high-frequency) contribution εel contains
the electronic response, while the vibrational (ionic or lattice) contribution depends on
the vibrational properties of the system, and is the sum of the vibrational contributions
of all IR-active modes. Our calculations given for the electronic component, also called
the optical dielectric constant (optical relative permittivity), the value εel = 1.882 for CSF
and εel = 1.745 for KSF. Note that the square root of these values gives the refractive index
value presented in Table 1, which is in very good agreement with the experimental data.
The three IR-active modes of CSF and KSF contribute to the vibrational component εvib(0)
of the static dielectric constant ε(0). Our calculations reveal that, for CSF, εvib(0) = 2.162.
Wherein, the main contribution to the εvib(0) (1.775 from 2.162) comes from the vibrational
mode at 108 cm−1—the IR-active vibrational mode with the lowest frequency. This is
expected, since the contributions of vibrational modes to εvib(0) is inversely proportional to
the square of the frequency [15]. Thus, we calculated that the static dielectric constant of
CSF is ε(0) = 4.044. For KSF εvib(0) = 2.628, again with the main contribution (2.160 from
2.628) from the IR-active vibrational mode with the lowest frequency (137 cm−1). The
calculated static dielectric constant of KSF is 4.373. To summarize, we can say that the
considered dielectric properties of CSF and KSF are quite close; however the vibrational
contribution to the static dielectric constant is slightly larger for the KSF crystal.

3.5. Debye Temperature Evaluation

In this subsection, the dependence of elastic wave (sound) velocities and the Debye
temperature in the CSF crystal on external pressure will be estimated and compared with
similar dependences for the KSF crystal. The corresponding calculations for KSF were
performed in Refs. [10,15]; the authors have no information about such calculations for the
CSF crystal.
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The longitudinal vl and transverse vt sound velocities in crystal can be calculated
using the following equation [10,13,34]:

vl =

√
3B + 4G

3ρ
, vt =

√
G
ρ

, (3)

where B is the bulk modulus, G is the shear modulus, and ρ is the density of the material.
Note that the density included in Formula (3) also depends on pressure and, at each
pressure, its value for the optimized structure was calculated. The average elastic wave
velocity (an effective sonic velocity) vm, weighted by the number of polarization states, can
be calculated using vl and vt as follows [10,13,34]:

vm =

[
1
3

(
2
v3

t
+

1
v3

l

)]−1/3

. (4)

The Debye temperature ΘD is proportional to vm and is calculated by the following for-
mula [10,13,34]:

ΘD =
h
k

(
3nNA

4π

ρ

µ

)1/3
vm , (5)

where h and k are the Planck’s and Boltzmann’s constants, respectively, NA is the Avogadro’s
number, µ is the molecular weight, and n denotes the number of atoms per formula unit (9
for CSF and KSF).

Thus, using the B and GH moduli from Table 3 and Equations (3)–(5), the sound veloci-
ties vl, vt, and vm, as well as the Debye temperature ΘD, can by calculated as functions of
the external pressure. The results of these calculations, along with the pressure-dependent
CSF density, are collected in Table 6.

Table 6. Dependences of CSF density ρ (kg/m3), the sound velocities vl, vt, vm (m/s) in crystal
and Debye temperature ΘD (K) on pressure. The data in this table were calculated using results of
first-principle simulations.

Pressure, GPa ρ vl vt vm ΘD

0 3887 2935 1651 1837 204
4 4459 3618 1714 1928 224
8 4831 4011 1707 1929 230

12 5127 4338 1718 1947 237
16 5378 4630 1740 1975 244
20 5593 4907 1783 2025 254

First, let us compare the densities of the CSF and KSF crystals. At the ambient pressure,
the CSF density is 3887 kg/m3 (see Table 6), which is significantly higher than the density
of the KSF (2763 kg/m3 [15]). The densities of both crystals increase monotonically with
pressure, and at 20 GPa the increase of the CSF density is ~44%, while the increase of the
KSF density is ~40%. From this fact we can once again conclude that the rigidity of the KSF
crystal is slightly higher than that of the CSF.

As was shown in Ref. [15], all sound velocities (vl, vt, vm) and the Debye temperature
increase monotonically with increasing pressure in KSF. The authors of Ref. [10] have
drawn the same conclusion for the KSF crystal. Table 6 reveals that the situation with the
CSF crystal is a little more complicated. Namely, the monotonous increase in transverse
velocity vt between 4 GPa and 12 GPa is violated. Probably, there is also a local minimum
in the specified pressure range for the vm velocity. As a result, when the pressure increases
from 0 to 20 GPa, the increase in velocity vt is about 8%, and vm is about 10% (Figure 9a).
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For comparison, these values for the KSF crystal are 48% and 50%, respectively [15] (see
Figure 9b). Note that, in the range of 0–20 GPa, velocities vl, vt, and vm, as well as the Debye
temperature, are higher for the KSF crystal. The growth rate of all these parameters is also
higher for the KSF crystal. The velocity vl increases by 67% for CSF (change of pressure
0–20 GPa), and by 77% for KSF; the Debye temperature increases by 25% and 68% for the
CSF and KSF crystals, respectively (Figure 9c). The lack of both experimental data and
other calculations does not allow us to present any comparison of the obtained results.

Figure 9. Calculated dependences of transverse vt and effective (mean) vm sound velocities, as well
as Debye temperature, on pressure: (a) sound velocities in CSF; (b) sound velocities in KSF; (c) Debye
temperatures. The data for KSF are taken from Ref. [15]. The lines in the figures are shown only as a
guide to the eyes.

4. Conclusions
In this paper, the CRYSTAL23 computer code within the LCAO method of the density

functional theory, employing the advanced hybrid exchange-correlation B1WC functional,
was used for the first-principle simulations of a wide range of structural and physico-
chemical properties of perfect CSF and KSF crystals. The use of the hybrid functional
and Gaussian basis sets for the study of these materials is a distinctive feature of this
study. The structural, electronic, and elastic properties of compounds were considered
and compared in detail; obtained results were discussed and compared with available
experimental data and with the results of other calculations. Special attention was paid
to the electronic properties of the materials. In particular, the crystalline orbital overlap
population (COOP) analysis was used to determine the nature of the Si–F, Cs–F, and K–F
bonds. The vibrational and dielectric properties of CSF and KSF were calculated, and
one-phonon IR and Raman spectra were simulated. The effect of hydrostatic pressure (in
the range of 0–20 GPa) on selected structural, the electronic and elastic properties, as well
as on the Debye temperature, was analyzed.

Summing up, our calculations reveal that both the CSF and KSF crystals are wide-gap
insulators, and the band gaps of both crystals increase monotonically with pressure, but the
rate of increase is different. The obtained results demonstrate that the rigidity of the Si–F
bond in both crystals is significantly higher than that of the Cs–F or K–F bonds. Moreover,
the decrease in the volume of the unit cell of CSF and KSF with pressure occurs mainly
due to the decrease in the size of the CsF12 and KF12 polyhedra, respectively. The COOP
analysis for CSF and KSF shows that, below the Fermi level, only bonding Si–F orbitals are
observed, whereas for the A–F bonds both bonding and anti-bonding orbitals are present,
which may explain the differences in bond rigidity. Interestingly, the charge of the Si-ion
remains almost unchanged under external pressure in both crystals, while the charges
(in absolute value) of the A-cation and F-anion decrease monotonically with increasing
pressure. This may indicate that the ionicity of the A–F bonds slightly decreases. Analysis
of the influence of external pressure on the elastic properties of both materials shows that
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all considered elastic parameters increase with increasing pressure, however the rate of
increase can be very different. In general, the calculations reveal that the KSF crystal is more
rigid than the CSF crystal. The calculations also revealed differences in the dependence of
sound speeds on pressure in the CSF and KSF crystals. The method of isotopic substitution
was used for the analysis of vibrational properties of the crystals, as well as the IR and
Raman spectra. The Raman spectra of CSF and KSF demonstrated excellent agreement
with the experimental data.

The comprehensive data set obtained in this study provides valuable reference in-
formation on the properties of the CSF and KSF crystals, and will be used in the future
modeling of the luminescent properties of various impurities (e.g., Mn4+) in these materials.
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