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Abstract: The recovery of radiation damage induced by 231-MeV xenon ions with varying
fluence (from 5 × 1011 to 2 × 1014 cm−2) in α-Al2O3 (corundum) single crystals has been
studied by means of isochronal thermal annealing of radiation-induced optical absorption
(RIOA). The integral of elementary Gaussians (product of RIOA spectrum decomposition)
OK has been considered as a concentration measure of relevant oxygen-related Frenkel
defects (neutral and charged interstitial-vacancy pairs, F-H, F+-H−). The annealing kinetics
of these four ion-induced point lattice defects has been modelled in terms of diffusion-
controlled bimolecular recombination reactions and compared with those carried out earlier
for the case of corundum irradiation by fast neutrons. The changes in the parameters of
interstitial (mobile component in the recombination process) annealing kinetics—activation
energy E and pre-exponential factor X—in ion-irradiated crystals are considered.

Keywords: Al2O3; radiation; swift heavy ions; radiation-induced absorption; Frenkel
defects; diffusion-controlled annealing

1. Introduction
Several metal oxides (binary ones, perovskites, spinel-structed, garnets) reveal fascinat-

ing physical–chemical properties, high melting temperature, and wide optical transparency
region (energy gap, Eg exceeds 7 eV), and, therefore, these single crystals and polycrystalline
ceramics are widely used for different scientific and technological application. In particular,
aluminum oxide (corundum, sapphire, α-Al2O3 with lattice structure of R3 space group [1])
is exploited as a host for ruby, titanium–sapphire, and color-center lasers [2–5]; material
for optical windows and light guides, the medical and jewelry industry, and substrates for
electronics [6]; scintillation detectors and luminescent dosimeters of radiation [7–12]; etc.
Because of its high radiation tolerance, corundum is used in fission-based energetics and is
considered a promising material for projected advanced and fusion reactors [13–16].

Radiation processes in α-Al2O3 crystals induced by incident energetic particles (neu-
trons, electrons, light and heavy ions) have been thoroughly investigated over many
decades using different experimental methods [13,17–39]. To a large extent, the degradation
of functional materials exploited under a radiation environment is determined by increasing
radiation damage via the creation, accumulation, and aggregation of primary lattice defects,
interstitial-vacancy (i-v) Frenkel pairs. In corundum, as well as in other radiation-resistant
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metal oxides, the formation energy of a Frenkel pair (displacement threshold energy) ex-
ceeds the Eg value by several times (see, e.g., Ref. [25] and references therein), and i-v
pairs are predominantly formed due to elastic collisions of incident particles with material
nuclei. It is generally accepted that such an impact (displacement) mechanism is solely re-
sponsible for the damage induced by fast fission neutrons [13,21,25,40,41]. However, some
contribution of ionization losses could also be considered in case of material irradiation by
swift heavy ions, which provide extremely high density of electronic excitations along ion
tracks [32,34,42–45]. Irradiation with swift heavy ions causes intense local lattice disorder
and efficient formation of extended defects.

Nowadays, oxygen vacancy-related defects have been studied more completely in
α-Al2O3 single crystals. The optical characteristics (absorption/excitation and relevant
emission bands) of a single oxygen vacancy with two or one trapped electron (the classical F
and F+ center, respectively), as well as the simplest F2 dimer centers in different charge states
(from two to four electrons localized in two adjacent oxygen vacancies), have been revealed
in crystals either exposed to radiation [19,20,22,24,26,31,32,37,38] or grown under reducing
atmosphere conditions (anion-deficient or thermochemically reduced crystals [24,26,46–48]).
In addition, the EPR signal of the F+ center was revealed in neutron-irradiated corundum
long ago [18], and the signal of the paramagnetic dimer of two adjacent F+ centers (total
spin S = 1) was recently detected as well [38].

The processes of thermal annealing of the radiation-induced F- and F2-type defects in
corundum crystals have also been studied [13,22,24,28,30,35–38,46,47]. It has been estab-
lished that just oxygen interstitials act as a mobile component in a temperature-stimulated
recombination of complementary defects from i-v Frenkel pairs. This conclusion is based
on a very high thermal stability of the F centers (up to at least 1000 ◦C) in thermochemically
reduced α-Al2O3 crystals (as well as in MgO [49]), which do not contain oxygen interstitials,
while the F center annealing in the irradiated crystals takes place at significantly lower
temperatures [24,46,47].

The thermal annealing kinetics of the F-type centers in corundum crystals has been
theoretically analyzed [35,50], and lately also with the involvement of two types of mobile
oxygen interstitials [37,51,52]. It is notable that isolated oxygen interstitials have been re-
vealed only recently in neutron-irradiated α-Al2O3 crystals [36,51]. Such single interstitials
have been detected via the EPR method in the form of a superoxide ion. Until then, only the
ERP signals of oxygen interstitials associated with additional imperfections (in particular,
with a cation vacancy) were detected in binary metal oxides (see, e.g., Refs. [36,53]).

The present study is a logical continuation of our previous paper [39], where the accu-
mulation of different anion Frenkel defects with fluence of 231-MeV xenon ions was studied
in α-Al2O3 single crystals. The isochronal annealing of oxygen-related Frenkel defects (the
defect concentration is taken as an integral of a relevant elementary optical absorption
band) has been measured in corundum crystals preliminary irradiated by energetic xenon
ions with fluence varying from 5 × 1011 to 2 × 1014 cm−2. The experimentally obtained
annealing kinetics have been theoretically analyzed in terms of the diffusion-controlled
reactions between two pairs of oxygen Frenkel defects.

2. Experimental
Nominally pure α-Al2O3 single crystals were supplied by Alineason Materials Technol-

ogy GmbH. The crystal plates with dimensions of 5 × 5 × 0.5 mm3 were cut off with a base
orientation perpendicular to the c crystal axis and polished from both sides. Using the EPR
method, the concentration of Cr3+ impurity centers was determined as ≈3.2 × 1015 cm−3,
while commonly present Fe3+ ions were not detected at all (if present, significantly below
1014 cm−3).
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The samples were irradiated by 231-MeV 132Xe ions (flux along the c axis) with
nine different fluences Φ between 5 × 1011 and 2 × 1014 cm−2 at room temperature (RT)
using the DC-60 accelerator in Astana, Kazakhstan. Based on SRIM-2013 calculations [54],
the penetration depth (range) of ions into the crystals was estimated approximately as
R = 13.5 µm.

The optical absorption spectra were measured at RT in a wide range of 1.5–8.5 eV using
two setups: a JASCO V-660 spectrometer (till 6.5 eV) and a vacuum monochromator VMR-2
with a hydrogen discharge in a flow capillary tube as a light source. In the latter case,
the number of incident photons was normalized via sodium salicylate luminescence. The
absorption of a pristine crystal was subtracted from the spectrum for the same sample after
irradiation. This difference spectrum of the so-called radiation-induced optical absorption
(RIOA) was decomposed into Gaussians, which characterized the concentration of different
point lattice defects.

The isochronal thermal annealing of the irradiated crystals was performed in an
argon atmosphere as follows: a sample was heated to a predetermined temperature Tpr

and stayed at this temperature for five minutes; finally, a quartz reactor tube with the
sample was removed from a furnace and passively cooled down to RT. Such cycles were
performed under the same conditions with an increase in Tpr by 20–40 K to up to 1250 K.
After each preheating, the RIOA spectrum was measured at RT and decomposed into
elementary components.

The concentration of paramagnetic centers (both impurities and radiation defects) in
corundum crystals was determined by means of a tailored Bruker software and a 9.8 GHz
spectrometer Bruker ELEXSYS-II E500. The estimation accuracy of the paramagnetic center
concentration (impurity ions or radiation defects) was about 15% (see also Ref. [39]).

3. Results and Discussion
3.1. Thermal Annealing of RIOA Bands Related to Radiation-Induced Frenkel Defects

In the present paper, we focus on the thermal annealing kinetics of oxygen-related
Frenkel pairs (both charged and neutral i-v pairs) in corundum single crystals irradiated
by different fluences of energetic xenon ions. According to the literature data [19,23,24,46],
two optical absorption bands that peaked at 4.8 and 5.3 eV are related to the F+ center, the
structure of which (V•

O in Kröger–Vink notation) is strictly confirmed by the EPR method
(see, e.g., Refs. [18,38]. The absorption band, detected in thermochemically reduced and
irradiated crystals and peaking around 6.1 eV, is attributed to the F centers (a neutral defect
with respect to a regular lattice, V×

O ) [19,23,24,46].
The characteristics of oxygen interstitials, with defects being complementary to

vacancy-containing F and F+ centers, have been revealed only recently. A single charged
oxygen interstitial (labelled H− or O′

i in Kröger–Vink notation) stabilized by a trapped
hole was detected in the form of superoxide ion O−

2 in a neutron-irradiated corundum by
the EPR method [36,51]. The analysis of isochronal annealing of the EPR signal and RIOA
spectra allowed the 5.6 eV absorption band to be attributed to the H− centers [36,37,51,52])
and for the ≈6.6 eV RIOA band to be suggested as being connected with neutral oxygen
interstitials (labelled as H0 or O′′

i ) [37,51,52].
In the previous paper, we studied the evolution of optical absorption spectra with

Xe-ion fluence and confirmed/proved the radiation-induced origin of the defects respon-
sible for a RIOA above 4 eV (F+, F, H− and H0 centers) [39]. Note that the analysis of
RIOA in neutron- or ion-irradiated corundum single crystals was always performed via
spectra decomposition into Gaussian components related to different types of radiation
defects [36,37,39,51,52]. Figure 1 presents the examples of the RIOA spectra decompo-
sition into Gaussians in the crystals exposed to different Xe-ion fluences (Figure 1a,c)
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or after additional preheating of the irradiated crystals to prescribed temperatures Tpr

(Figure 1b,d). The same parameters of Gaussian components (maximum position and
bandwidth) were used in Ref. [39] and in the present study. The Gaussians marked by
dashed lines belong to still-unidentified defects and are not the subject of this article. The
F2-type dimer centers in different charge states possess characteristic absorption bands at
2.3–4.0 eV [22,24,32,36,37,47,51], their concentration in Xe-irradiated crystals is low, and
these dimers are not considered in the present study.
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Figure 1. The RIOA spectra and their decomposition into elementary components for α-Al2O3

single crystals irradiated with two fluences, Φ = 1012 Xe/cm2 and Φ = 1013 Xe/cm2. The symbols
demonstrate experimental points, and the red solid line is the sum of all Gaussian components. The
spectra are measured at RT after irradiation (a,c) and additional preheating of the irradiated crystal
to Tpr = 680 K (b,d).

Figure 2 demonstrates the concentration dependences of four oxygen-related Frenkel
defects on the fluence of corundum crystal irradiation with 231-MeV Xe ions (compared to
Ref. [39], irradiations with three more fluences were performed). The continuous increase
in defect concentration with fluence up to Φ = 2 × 1014 cm−2 proves that, similar to the
classic F and F+ centers, the defects connected with the absorption Gaussians at ≈5.6 and
≈6.6 eV are the irradiation-induced lattice defects.

In Figure 2, the integral of a certain Gaussian (in arbitrary units) is taken as a con-
centration measure of the relevant Frenkel defects. At the same time, the concentration of
paramagnetic defects—in particular, the F+ and H− centers—can directly be determined by
the EPR method. Note that ion irradiation created defects only within a thin crystal layer
and their absolute number in the crystal (number of unpaired spins) was significantly lower
than in the case of neutron irradiation. Because of the features or relevant EPR spectra,
only the signal of superoxide ions O−

2 (an H− stabilized by a trapped hole) was clearly
registered in our samples. At Φ = 1013 Xe cm−2, the concentration of H− interstitials was
estimated as N = 1.5 × 1018 cm−3, the value approximately doubled for Φ = 1014 cm−2

(N = 3.2 × 1018 cm−3), and the concentration of O−
2 reached N = 3.55 × 1018 cm−3 in the

case of the highest Φ = 2 × 1014 cm−2. The accuracy of concentration estimation was
about 15% (for details, see Ref. [39]). Note that in a neutron-irradiated corundum, the EPR
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signals of both the F+ and O−
2 centers were clearly detectable and the concentration of these

paramagnetic defects was practically equal [36,51].
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Figure 2. Dependences of the defect concentration on the Xe-ion fluence in α-Al2O3 single crystals.
The integral of a relevant Gaussian is used as a measure (concentration in arb. units) of different
Frenkel defects. Solid lines serve as guides for the eye.

Based on the above-described decomposition procedure, the thermal annealing of
four Frenkel defects was studied in α-Al2O3 single crystals preliminary irradiated with
different fluences of energetic xenon ions. The decomposition of RIOA spectra measured at
RT after each preheating to a predetermined temperature Tpr (see examples in Figure 1b,d)
allowed for the construction of concentration dependences on preheating temperatures
for different defects (the defect concentration is proportional to the integral of a relevant
Gaussian) induced by different ion fluences.

Figure 3 presents the examples of such isochronal annealing kinetics, which describe
the thermal stability of a certain defect type, constructed for the corundum crystals ion-
irradiated with Φ = 5 × 1012 cm−2 and Φ = 1013 cm−2. The normalization of annealing
curves simplifies the separation of temperature-stability regions typical of different defects.
It is clearly seen that only the annealing of charged interstitials H− could be roughly
considered a one-stage process, while the decay of other Frenkel defects took place in
several stages. The stability of the F+ centers was estimated via two RIOA Gaussians peaked
around 4.8 and 5.3 eV, the annealing kinetics of which practically coincide (deviations in
the region with rather low values of optical density illustrate the experimental accuracy).

Of particular interest is the influence of irradiation fluence that should lead to different
space topologies of radiation-induced defects on the kinetics of recombination processes be-
tween the complementary Frenkel defect. The experimentally obtained annealing curves of
the F, F+, H−, and H0 defects induced by four different Xe-irradiation fluences are presented
in Figures 4–6. In comparison, the experimental annealing curves for the same Frenkel
defects constructed on the basis of the relevant RIOA Gaussians in neutron-irradiated
corundum (see our previous publications [36,37,51]) are shown in Figures 4–6 as well.
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Figure 3. Normalized thermal annealing curves of RIOA Gaussians (maxima at indicated photon
energy) connected with oxygen-related Frenkel defects for corundum crystals irradiated by 231-MeV
Xe ions with different fluences. The integral of an elementary Gaussian serves as a measure of relevant
defect concentration. Solid lines serve as guides for the eye.
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Figure 4. Normalized annealing curves for the F+ centers induced by 231-MeV Xe ions or fast
neutrons in α-Al2O3 single crystals. The integral of a RIOA Gaussian at Imax = 4.81 eV (a) and
Imax = 5.33 eV (b) serves as a measure of defect concentration. Solid lines serve as guides for the eye.
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It is notable that in neutron-irradiated corundum crystals, intense EPR signals related
to the F+ and H− (O−

2 ) defects allowed for precise registration of the defect concentration
dependence on the preheating temperature. It has been clearly demonstrated that such de-
pendences for paramagnetic F+ and H− centers practically coincide with those constructed
on the basis of relevant RIOA Gaussians [36,37,51]. Unfortunately, the EPR method was
not applicable for thermal annealing in the case of Xe irradiation. Due to the small range
of energetic Xe ions (around 13.5 µm), the absolute number of ion-induced defects was
too low, up to two orders of magnitude lower with respect to the crystals homogeneously
colored in a whole volume by fast neutrons. As a result, in the present study, the annealing
of Frenkel defects was studied only via the defect-related RIOA Gaussians (with the band
integral proportional to the defect concentration).

It is clearly seen that only the annealing kinetics of the H− centers (RIOA at 5.6 eV)
were very similar for both cases of irradiation (see Figure 6), while in general, the annealing
of other Frenkel defects in ion-irradiated crystals started at lower temperatures than in
neutron-irradiated crystals (see Figures 4 and 5). Note that the thermal annealing kinetics
of neutron-induced Frenkel defect pairs (F+-H− and F-H0) have already been modelled in
terms of diffusion-controlled biomolecular reactions and the involvement of differently
charged mobile oxygen interstitials [37,51,52]. The present study is a logical continuation
of such theoretical analysis for the case of oxygen-related defect creation by energetic ions
with different fluences.

3.2. Method and Kinetics Modelling

In this section, we discuss the main theoretical results by comparing two sets of defect
annealing kinetics in the same material (α-Al2O3), subjected to different types of irradiation:
neutrons and swift heavy ions. The case of neutron irradiation has been thoroughly
investigated in our previous studies [37,51,52], where we developed a model describing the
underlying processes and introduced an appropriate mathematical framework for defect
recombination kinetics. The details of this model and the associated solution methods are
extensively covered in the cited references; therefore, only key definitions and concepts
will be summarized here.

We treat the neutron irradiation case as a reference or benchmark and seek to under-
stand why the kinetics change qualitatively—sometimes appearing anomalous—under
energetic ion irradiation. The model introduced in our studies [37,51,52] assumes that
irradiation generates both neutral and charged Frenkel defects, while maintaining over-
all electrical neutrality. Specifically, two types of anion Frenkel defect pairs are created:
charged defect pairs (F+-H−) and neutral defect pairs (F-H0).

Initially, the concentrations of each electron-type vacancy-containing centers and
their complementary interstitials—either neutral (H0) or charged (H−)—are equal. These
concentrations evolve through recombination processes, which, in turn, affect the relative
proportions of neutral and charged radiation defects. Both neutral and charged interstitials
can recombine not only with their respective counterparts but also with other types of
vacancy-containing centers. The recombination rates vary, depending on the defect charges,
with Coulomb attraction accelerating recombination between oppositely charged defects
(see, e.g., Ref. [52]).

The annealing process in this model is formally a complex one due to the inter-
action of four defect species. However, the analysis is simplified by the fact that all
recombination events are bimolecular and diffusion-controlled. The fundamental expres-
sion governing these processes is the Smoluchowski relation for the reaction rate [52,55]:
K = 4πDR, where D is the relative diffusion coefficient of the reacting species, and R is the
recombination radius.
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In oxide materials like α-Al2O3, it is well-established that vacancies exhibit signifi-
cantly lower mobility than interstitials in the temperature range relevant to annealing. As
a result, the mobility of vacancies can be neglected, DF ≈ 0 and DF+ ≈ 0, and only the
interstitials (H0 and H−) are mobile and govern the kinetics. These interstitials migrate
via thermally activated jumps characterized by activation energies Ea and Eb, leading to
diffusion coefficients of the form:

DH− = Daexp
(
− Ea

kBT

)
, (1)

DH0 = Dbexp
(
− Eb

kBT

)
, (2)

where Da and Db are the respective pre-exponential factors.
When solving the system of kinetic equations describing bimolecular recombination

among the four defect types [52], the diffusion pre-factors appear as a part of effective
process pre-exponentials:

Xa = DaN0R/β, (3)

Xb = DbN0R/β. (4)

These expressions combine several physical and experimental parameters, including
the diffusion coefficients (Da and Db), recombination radius R, total concentration of
vacancy-containing centers N0 (equal to that of interstitials), and the effective heating
rate β. Here, β is defined as a constant rate of temperature increase during annealing,
β = Tmax−Tmin

∆t = const. Overall, this kinetic analysis provides a pathway to infer the
mobility of interstitial atoms—information that is otherwise challenging to obtain directly.

Figure 7 presents a comparison of the annealing kinetics for four types of Frenkel
defects, whose recombination involves a complex interplay of cross-reactions, under two
irradiation conditions: fast neutron irradiation (Figure 7a) and swift heavy ion irradiation
(Figure 7b). Since the annealing kinetics are largely governed by mobile interstitials,
particular attention should be paid to the RIOA bands corresponding to two differently
charged interstitials: the band that peaked at 5.6 eV is related to the H− centers, while the
maximum of the tentative H0 center absorption is around 6.6 eV.

For both irradiation types, the experimental kinetics of the H− centers appear to
be robust. This reliability stems from the fact that in the relevant energy range, spectral
decomposition into Gaussian components is straightforward. As a result, the experimental
data points align smoothly with the theoretical curves, and the associated errors are minimal.
Consequently, the agreement between theory and experiment for the H− centers in Figure 7
can be considered very good.

In contrast, the two kinetics of neutral H0 centers present significant challenges. At
higher energies (above a certain threshold), experimental measurements of RIOA are not
feasible. In the case of ion-irradiation, the influence (overlapping) of the Gaussians of
unknown origin peaking above 7 eV (labelled by dashed lines in Figure 1) on the bands of
the H0 and even F centers is significant. In a neutron-irradiated corundum, the isolated
maximum of the F-absorption is clearly registered at 6.07 eV, and this RIOA band intensity
decreases till 7 eV by more than two times [36,37,51,52]. On the other hand, there is no
isolated F-band in the RIOA spectra of Xe-irradiated crystals (see Figure 1a,c); a relative
contribution of high-energy Gaussians (tentatively connected with more complex structural
defects) increases with Tpr (see Figure 1b,d). According to Figure 8, these intense Gaussians
are clearly detectable even after Tpr = 1240 K, i.e., total annealing of the Frenkel defects
under consideration.
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Figure 7. The normalized experimental annealing kinetics for four types of radiation-induced Frenkel
defects (symbols—on the basis of relevant RIOA Gaussians) and their theoretical analysis (full lines)
for α-Al2O3 single crystals exposed to fast fission neutrons (part (a), see also Refs. [51,52]) and
231-MeV xenon ions (part (b)).

As seen in Figure 7, the theoretical and experimental curves for the H0 centers di-
verged at high temperatures. Specifically, the amplitudes of bands reconstructed from
these problematic spectral regions decayed too rapidly, in contradiction with the expected
behavior dictated by chemical kinetics. Despite these difficulties, the diffusion-controlled
model used in this study demonstrated high stability. In Figure 7, we compare experimental
results with theoretical predictions based on the RIOA band, which peaked at 4.8 eV and
was ascribed to the F+ center. Note that almost the same arrangement of modelled curves
was obtained, taking the 5.3 eV RIOA band as a measure of the F+ centers (both bands were
related to the same defect).
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Figure 8. The RIOA spectrum and its decomposition into elementary components for α-Al2O3 single
crystals irradiated with Φ = 5 × 1012 Xe/cm2 and additionally preheated to Tpr = 1240 K. Symbols
demonstrate experimental points, and the red solid line is the sum of Gaussian components. The
spectrum was measured at RT.

Our less obvious finding is concerned with the role of radiation fluence. Previous
studies (see, e.g., Refs. [35,50]) have shown that fluence can significantly impact the anneal-
ing kinetics under electron, proton, and neutron irradiation, particularly altering diffusion
activation energies. However, for heavy ion irradiation, our analysis indicates that anneal-
ing kinetics are largely fluence-independent. This is consistent with the level of agreement
observed in Figure 7b. Notably, the reducing fluence increased experimental uncertainty
and limited the scope for theoretical analysis. Consequently, it was impossible to reach
the fluence regime when neutron and ion irradiation data hypothetically might have con-
verge. So far, the results suggest that switching to ion irradiation qualitatively alters the
annealing behavior. This weak or even negligible kinetics dependence on fluence during
ion irradiation has also been previously observed [56], though a definitive explanation
remains elusive.

As a result of fitting the theory to the experimental kinetics using the least squares
method, we obtained the characteristics of the interstitials, which are summarized in Table 1.
Before discussing the obtained numerical values, a necessary comment should be made. It
is easy to see that in the case of neutron irradiation, both kinetics for interstitials showed
a step, sharply falling in the temperature range of 100–200 K from the maximum to the
minimum values. Meanwhile, to determine the activation energy with high accuracy,
it is desirable to analyze the kinetic curves in a wide temperature range. Here, there is
an analogue of the uncertainty relation between the temperature range and the error in
determining the energy. This uncertainty was eliminated in Refs. [37,51,52] by equating the
values of the diffusion activation energies to independent theoretical estimates, Ea = 0.80 eV
and Eb = 1.20 eV, found for corundum by quantum chemistry methods (see Refs. [51,52]
and references therein). The accuracy of these values can be estimated as 20%. The reason
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is trivial: the minimum of the optimized function is poorly expressed due to the noted
uncertainty relation between energy and temperature.

Table 1. The obtained migration energies of interstitials E and corresponding pre-exponential
factors X.

Irradiation Source Fluence Ea (eV) Xa (K−1) Eb (eV) Xb (K−1)

Neutrons, Ref. [52] 6.9 × 1018 cm−2 0.80 2 × 103 1.20 2 × 104

Xe-ions 5.0 × 1013 cm−2 0.65 3 × 102 0.50 6 × 100

As a result, for the case of neutron irradiation, it can be concluded that the inequality
Ea < Eb is a reliably established fact (charged interstitials are more mobile than neutral ones),
but the values of the activation energies in Table 1 are only rough estimates. Therefore, for
charged interstitials, other results are also quite acceptable.

A comparison of Figure 7a,b demonstrates that the transition from neutron to ion
irradiation qualitatively changed the kinetics of the radiation defect annealing: the charac-
teristic step of annealing of the H0 interstitials disappeared and, instead, an unusual form
of defect concentration decline, along a straight line with a certain slope, took place in a
large temperature range (about 500 K). Nevertheless, Table 1 shows that the experimental
kinetics can be approximated by theoretical ones within the framework of the same model
involving four defect types, although the parameter values are different. It remains to be
clarified which parameter changes are responsible for the noted visual changes.

For ion irradiation, the migration energy of charged interstitials Ea = 0.65 eV was
obtained by fitting to the experiment via the least squares method, without using estimates
found by other methods. It can be seen that the found value falls within the uncertainty
interval (20%) that we discussed in the case of neutron irradiation. There is every reason to
conclude that the H− interstitials had the same nature for both irradiation types. Moreover,
a comparison of the corresponding values of the kinetic pre-factors, Xa = 2 × 103 K−1 for
fast neutrons and Xa = 3 × 102 K−1 for energetic Xe ions, showed a small difference. Let us
pay also attention to Equation (3): When changing the radiation source from neutrons to
ions, there is no guarantee that the same values of the initial concentration of the vacancy-
containing centers (F and F+) are preserved. Therefore, a small discrepancy between the
numerical values of the parameters is quite explainable.

For neutral interstitials H0, the data in Table 1 reveal not only a substantial reduction
in the activation energy from Eb = 1.20 eV to Eb = 0.50 eV, but also a dramatic change in
the pre-exponential factor by several orders of magnitude. Given the rough nature of these
estimates, we cannot definitively claim that the previously assumed inequality Ea < Eb

was reversed under ion irradiation. However, it is evident that the activation energies for
the two types of interstitials under ion irradiation became comparable, which is a highly
unusual conclusion.

It is important that within this scenario, the four-orders-of-magnitude drop in the
Xb pre-factor can no longer be attributed solely to the changes in the F-type center con-
centration. This kind of simultaneous decrease in both the activation energy and the
pre-exponential factor is analyzed in detail in Ref. [50] and is considered a manifestation of
a well-known phenomenon in disordered systems physics—the Meyer–Neldel rule [57,58].
According to this rule, a diminishing in activation energy E due to increasing material
disorder is compensated by a corresponding drop in the diffusion pre-factor X.

A plausible interpretation of the presented findings is that irradiation induces struc-
tural disordering, possibly progressing from a nearly perfect crystalline state toward
an almost amorphous structure [50]. Under heavy ion irradiation, such disordering is
likely to be especially pronounced—detailed mechanisms may include the formation
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of collision cascades, defect clusters, extended defects, local lattice disordering (see,
e.g., Refs. [25,34,44,45]). Our analysis suggests that the key difference in the annealing
kinetics between neutron and ion irradiation arises from the higher degree of local lat-
tice disordering introduced by ions. This disorder primarily affects neutral interstitials,
significantly altering their kinetic behavior.

Of particular interest are the features of two kinetics for the F and F+ centers. In
Figure 7a, the stepwise structure of these kinetics with a very unusual behavior is clearly
visible: the decay began at approximately the same temperature, and the curves initially
diverged (forked) but then converged again at higher temperatures. As is shown in detail in
Refs. [37,52], such behavior is due to the Coulomb interaction of charged defects. As a result,
the annealing curve of charged F+ centers always passes below the analogous curve for
the neutral centers. In Figure 7b, the stepwise structure of the kinetics and the anomalous
behavior (divergence or convergence of the curves) are expressed as significantly weaker.
Such a discrepancy between the kinetics for neutron and ion irradiation has a simple
explanation. So far in the discussion, we have not paid attention to a trivial fact: radiation
creates pairs of charged and neutral defects, but in different proportions. A parameter w+

was introduced in Refs. [37,51,52] as the fraction of charged defects when the annealing
begins. The kinetics shown in Figure 7a,b correspond to different values of this parameter,
namely, w+ = 0.55 for neutron irradiation and w+ = 0.75 for ion irradiation. In other
words, in case (Figure 7a), the initial concentration of charged and neutral defects practically
coincides, but in case (Figure 7b), these same concentrations are related as three to one.
Meanwhile, Ref. [52] shows that such asymmetry in the initial concentrations leads to a
systematic shift in the kinetics of the F and F+ centers, bringing them close to the annealing
curve for the H− charged interstitials. Just such a shift effect can be seen in Figure 7b.

4. Conclusions
The thermal stability of oxygen-related Frenkel defects created in α-Al2O3 single crys-

tals at room temperature by 231-MeV 132Xe (fluence from 5 × 1011 to 2 × 1014 cm−2) has
been evaluated. Taking the integral of an elementary absorption band (obtained via decom-
position of RIOA spectra into Gaussians) as a measure of the relevant defect concentration,
the dependences of defect concentration on preheating temperature (isochronal annealing
regime up to 1250 K) were constructed.

Such annealing curves for the classical vacancy-containing F and F+ centers (with
RIOA bands that peaked at 6.1 eV and 4.8 eV, respectively), as well as complementary
Frenkel defects —charged and neutral oxygen interstitials—for H− and H centers (bands
at 5.6 eV and ≈6.6 eV), have been theoretically analyzed in terms of diffusion-controlled
bimolecular recombination reactions. In addition, annealing kinetics of the F+-H− and F-H0

Frenkel pairs in Xe-irradiated crystals have been compared with those studied earlier in
fast neutron-irradiated corundum (see our previous studies, Refs. [37,51,52]).

A comparison of the diffusion parameters extracted for neutron and Xe irradiation
reveals that the migration energies for both charged and neutral interstitials are reduced in
the latter case, very likely due to stronger structural disordering upon irradiation (according
to the Meyer–Neldel rule discussed above).
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