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ABSTRACT: Metal—organic frameworks (MOFs) are promising Hollow Zn-N-C Spheres
precursors for creating metal—nitrogen—carbon (M—N-C)

electrocatalysts with high performance, though maintaining their for

structure during pyrolysis is challenging. This study examines the Oxygen.
transformation of a Zn-based MOF into an M—N—C electro- Reduc'tlon
catalyst, focusing on the preservation of the carbon framework and Reaction

the prevention of Zn aggregation during pyrolysis. A highly porous electro-
Zn—N—C electrocatalyst derived from Zn-TAL MOF (where TAL catalysis
stands for the TalTech-UniTartu Alliance Laboratory) was

synthesized via optimized pyrolysis, yielding notable electro-

catalytic activity toward oxygen reduction reaction (ORR).

Scanning electron microscopy (SEM) and X-ray diffraction
spectroscopy (XRD) analyses confirmed that the carbon frame-

work preserved its integrity and remained free of Zn metal aggregates, even at elevated temperatures. Rotating disc electrode (RDE)
tests in an alkaline solution showed that the optimized Zn—N—C electrocatalyst demonstrated ORR activity on par with commercial
Pt/C electrocatalysts. In an anion-exchange membrane fuel cell (AEMFC), the Zn—N—C material pyrolyzed at 1000 °C exhibited a
peak power density of 553 mW cm™? at 60 °C. This work demonstrates that Zn-TAL MOF is an excellent precursor for forming
hollow Zn—N—C structures, making it a promising high-performance Pt-free electrocatalyst for fuel cells.

1. INTRODUCTION significantly influenced by factors such as surface morphology
and texture, and the diversity of nitrogen species, with the
quanltgt)i 3of pyridinic nitrogen playing a particularly important
role.

The widespread method for preparing M—N—C electro-
catalysts involves pyrolyzing a mixture of metal, nitrogen, and
carbon-based precursors. Various precursors have been used to
obtain highly dispersed active site catalysts. Among them,
metal—organic framework (MOF) derived M—N—C electro-
catalysts exhibit great potential due to their rich porosity, high
surface area, and mechanical s.tal:»ility.l“_17 Specifically, Zn-
based M—N—C electrocatalysts exhibit intrinsic resistance to
Fenton-like reactions, allowing them to retain robust durability

The oxygen reduction reaction (ORR) has a critical role in
next-generation renewable energy storage and conversion
systems, including metal-air batteries and fuel cells." However,
the ORR is kinetically sluggish, which poses a significant
challenge to the practical usability of these technologies.”” To
speed up the ORR process, novel cathode electrocatalyst
materials are continuously being researched and developed.”
Despite these efforts, Pt-group metal-based electrocatalyst
materials remain state-of-the-art due to their exceptional
electrocatalytic activity.” However, their high cost, scarcity,
and poor stability significantly restrict their application at a
large scale.® In this context, transition metal—nitrogen—carbon
(M—N-C) single-atom catalysts (SACs) emerge as highly
promising and cost-effective alternatives, demonstrating excep- Received: December 16, 2024
tional efficiency in oxygen electrocatalysis.” The nitrogen- Revised:  April 3, 2025
coordinated metal sites (denoted as M—N,) integrated within Accepted:  April 4, 2025

the carbon framework of M—N-—C materials are widely Published: April 12, 2025
recognized as the primary catalytic sites for ORR.*’ In

addition to the M—N, sites, the electrocatalytic behavior is
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Figure 1. Schematic diagram of the (a) preparation of Zn-TAL; (b) schematic representation of a raw Zn-TAL hollow sphere; (c) schematic

representation of a pyrolyzed hollow sphere.

in harsh environments.'® Tuning the organic ligands in MOF
precursors allows control over the porosity of the resulting
carbon materials.'” During heat treatment, the porous
structure is maintained, which facilitates molecular transport
and increases the dispersion of active sites. However, according
to some studies, the structure of MOF-derived M—N—-C
materials changes after pyrolysis.”*~** Despite many research
findings, the chemical and morphological transformations of
MOFs during pyrolysis remain unclear because the structure of
the derived product can only be studied after the synthesis
process. Lately, various studies have been conducted to explore
the relationship between the temperature of pyrolysis and the
electrocatalytic behavior of materials.”® Ye et al. reported Zn-
MOFE-74 derived nitrogen-doped carbon pyrolyzed at 1000 °C
which showed an ORR onset potential of 1.02 V and a half-
wave potential (E;,) of 0.90 V.>* Additionally, ZIF-8 has
served as a template for synthesizing core—shell ZIF-8@ZIF-
67 structures, leading to the formation of cobalt nanoparticles,
as reported by Pan et al. and Liu et al.”>*°

The uncertainty in morphological changes during pyrolysis
also leads to challenges in understanding its effect on the
electrochemical performance of catalysts. Several studies have
investigated the use of Zn-MOF for the preparation of M—N—
C electrocatalysts, revealing contradictory perspectives on the
fate of zinc during the pyrolysis process. Some research
suggests that zinc remains incorporated within the structure as
Zn—N—C, contributing to the catalytic properties, while other
studies indicate that zinc may evaporate during high-temper-
ature treatment, potentially affecting the electrocatalytic
performance.”” Li et al. conducted a systematic investigation
using in situ analyses, such as in situ diffuse reflectance Fourier
transform infrared spectroscopy and thermogravimetric-differ-
ential scanning calorimetry, to clarify the decomposition
mechanism of Zn-MOF, complemented by X-ray and cyclic
voltammetrZ methods for assessing structural and surface
properties.”® They found that pyrolysis results in an
amorphous carbon—ZnO composite characterized by a highly
porous structure, with increased temperatures leading to
broader pore size distributions and enhanced surface area
and pore volume. In their computational study, Jin et al
examined four single-vacancy and seven double-vacancy Zn—
N—C graphene electrocatalysts, all demonstrating promising

stability.”” Their findings indicated that nitrogen doping
effectively modulates electron transfer, making Zn—N—-C a
promising electrocatalyst for ORR with an overpotential of
0.45 V.”

In addition to pyrolyzed M—N—C materials, another class of
ORR electrocatalysts involves conductive MOFs, such as
Ni;(HITP), and M;(HHTP),, which have shown promisin%
intrinsic catalytic activity without requiring pyrolysis.’*”>
These materials exhibit well-defined metal—ligand coordina-
tion environments and 7-conjugated organic linkers to achieve
electronic conductivity and redox activity.”' However, despite
their well-structured catalytic sites, their practical implementa-
tion is often hindered by structural instability under electro-
chemical conditions, particularly in alkaline environments,
where ligand degradation and dissolution of metal centers can
occur. Additionally, while conductive MOFs facilitate O,
reduction through ligand-centered or metal-based redox
mechanisms, their activity and stability often lag those of
pyrolyzed carbonaceous catalysts. A study on Niy(HITP),, for
example, reveals that while the framework exhibits notable
ORR activity and electron delocalization, it undergoes gradual
loss of performance over extended cycling.’”” To address these
challenges, MOF-derived M—N—C catalysts, which retain the
porosity of the original MOF while acquiring enhanced
stability through graphitization during pyrolysis, present a
more viable alternative.

In this work, we present a Zn-MOF developed from an
electron-rich 1H-benzo[d]imidazole-5,6-diol ligand, used here
as a single precursor to design a highly efficient oxygen
reduction electrocatalyst. This Zn-TAL framework (where
TAL stands for the TalTech-UniTartu Alliance Laboratory) is
rich in carbon and nitrogen, with zinc metal as the central
component. Building on earlier TAL frameworks first
synthesized in 2019 with iron,>* this Zn-based version
represents an evolution in the design of the x-TAL series.
Pyrolysis at 1000 °C transformed Zn-TAL into a highly active
and porous M—N—C electrocatalyst with favorable morphol-
ogy and optimal combination of active sites for ORR.

2. MATERIALS AND METHODS

2.1. Fabrication of Zn-TAL-Based Electrocatalyst
Materials. 1H-benzo[d]imidazole-5,6-diol was synthesized
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following previously published protocol.”>™** 1H-benzo[d]-
imidazole-5,6-diol (7.79 g, 43.7 mmol, 1.0 equiv) was added
into HBr (48%, S0 mL), and the mixture was left to stir at 120
°C. After 4 h, the mixture was cooled down to 0 °C, and the
precipitate was collected and washed with petroleum ether to
give the desired compound as a colorless solid (4.59 g, 30.6
mmol, 70%). (‘H NMR (400 MHz, dimethyl sulfoxide
(DMSO)) 6 9.75 (s, 2H), 9.25 (s, 1H), 7.12 (s, 2H). 13C
NMR (100 MHz, DMSO) & 146.4, 136.9, 123.7, 98.4.)

The electrocatalyst synthesis strategy is illustrated in Figure
1. Zn-TAL MOF was synthesized by adding ZnCl, (1.38 g,
10.1 mmol, 0.5 equiv) to a solution of 1H-benzo[d]imidazole-
5,6-diol (3.0 g, 20.2 mmol, 2.0 equiv) in a solvent mixture of
25% aqueous NHj;, dimethylformamide (DMF), EtOH, and
water (4:10:10:15; SO mL). The reaction mixture was stirred at
room temperature for 24 h, after which the resulting solid was
filtered, washed with ethanol, and dried at 60 °C for 12 h. The
dried Zn-TAL was then subjected to pyrolysis under a nitrogen
atmosphere for 1 h at four different temperatures (700, 800,
900, and 1000 °C) with a heating rate of 20 °C min".
Following pyrolysis, the samples were acid-etched using 3 M
HCl for 12 h at room temperature to remove residual zinc and
create hollow, porous structures. However, acid treatment can
leave behind CI™ ions and other residual species within the
carbon matrix, potentially affecting catalyst stability and
performance.”” To eliminate these residues and further
enhance material properties, the etched materials were
subjected to a second pyrolysis step (repyrolysis). This step
ensures complete acid removal and facilitates additional
structural reorganization, improving conductivity, optimizing
nitrogen coordination, and stabilizing active sites.*”*" The final
Zn—N-C powders were labeled as Zn-TAL-700, Zn-TAL-800,
Zn-TAL-900, and Zn-TAL-1000, corresponding to the
respective pyrolysis temperatures.

2.2. Physical Characterization. As synthesized Zn-TAL
was characterized by thermogravimetric analysis (TGA). The
thermogravimetry differential thermal analysis (TG-DTA) was
performed using a Setaram Labsys Evo 1600 thermal analyzer,
samples were heated in an Ar atmosphere to 1000 °C at a
heating rate of 10 °C min~" under nonisothermal conditions.
Standard alumina crucibles were used with a volume of 100 uL,
while the sample mass was 50 mg, and the gas flow rate was set
at 20 mL min~".

The morphology of Zn-TAL samples was investigated by
scanning electron microscope (SEM) with a cold field-
emissions gun (CFEG) made by Hitachi High Technologies
(Japan) model S5500, equipped with energy-dispersive X-ray
spectrometer (EDX)—Thermo Fisher Noran System Six. The
imaging was carried out at an accelerating voltage of 30 keV in
secondary electron (SE) and bright field transmission (BF-
STEM) mode at a magnification range of 10—200k times. The
EDX analyses were performed at 5 and 30 keV. The lower
energy was used to better characterize low energy peaks in the
range of C, N, and Zn.

Powder X-ray diffraction (PXRD) studies were performed to
gain information on the crystallography of the prepared
samples using a Bruker D8 Advance diffractometer with Ni-
filtered Cu Ko radiation. Surface elemental composition was
investigated by X-ray photoelectron spectroscopy (XPS)
employing Al Ka X-rays from a nonmonochromatic twin
anode X-ray tube (Thermo XR3E2) and an electron energy
analyzer SCIENTA SES 100. The metal content in studied
materials was investigated by the microwave plasma atomic

emission spectroscopy (MP-AES) technique. Analytical
samples underwent preparation through digestion in the
Anton Paar Multiwave PRO microwave system, utilizing
NXF100 vessels (with PTFE/TFM liner) within an
8NXF100 rotor. Following digestion, the samples were diluted
in 2% HNO; to achieve a final dilution factor of 61,000 and
subsequently analyzed using the Agilent 4210 MP-AES.
Elemental analyses were conducted using the PerkinElmer@
2400 Series II CHNSO/O Elemental Analyzer. The textural
properties of the electrocatalysts were examined through low-
temperature nitrogen adsorption conducted at the boiling
point of nitrogen (77 K) using the NOVAtouch LX2
instrument from Quantachrome Instruments. Prior to
measurement, the materials were degassed under a vacuum
for 12 h at 300 °C. The BET surface area (Szgr) of the samples
was then determined within a P/P, range of 0.02—0.2. The
overall pore volume (V) was assessed at P/P, 0.97. Pore size
distribution (PSD) and specific surface area (Sy;) were derived
from N, isotherms employing a quenched solid density
functional theory (QSDFT) equilibrium model designed for
slit-type pores.

2.3. Electrochemical Characterization. Electrochemical
measurements were conducted using a standard three-
electrode configuration, with a glassy carbon (GC) disk
electrode as the working electrode, a reversible hydrogen
electrode (RHE) as the reference electrode, and a GC rod as
the counter electrode. Autolab PGSTAT128N potentiostat/
galvanostat controlled by Nova 2.1.7 software was used to
apply the potential. A GC disc electrode (rotating disc
electrode—RDE) was connected to the OrigaBox speed
controller unit and rotated at various speeds (w = 400, 620,
900, 1225, 1600, and 2025 rpm). Fresh alkaline electrolyte
solutions were prepared by dissolving KOH pellets (99.99%,
Sigma-Aldrich) in Milli-Q water. Electrolytes were saturated
with pure O, (99.999%, Linde Gas) for ORR experiments and
with Ar (99.999%, Linde Gas) to eliminate oxygen for
recording the cyclic voltammetry (CV) curves. The GC
electrodes (diameter: S mm) were polished with 1 and 0.3 ym
alumina slurries and sonicated in both isopropanol and Milli-Q
water for 3 min to eliminate any remaining abrasive particles. 5
mg of electrocatalyst powder was dispersed in 200 yL of a 0.5%
Nafion solution (Sigma-Aldrich) in 2-propanol and sonicated
for S min to prepare a uniform ink. Then, 4 yL of the resulting
electrocatalyst suspension was drop-cast onto a GC electrode
with a mass loading of 0.5 mg cm™ and dried in ambient air at
room temperature. The commercial 20 wt % Pt/C (E-TEK)
was employed as a benchmark for ORR using the same
protocol for preparing ink and working electrodes. Selected
electrocatalysts underwent accelerated stability testing accord-
ing to a protocol of 5000 CV potential cycles from 1.0 to 0.6 V
versus RHE, with a scan rate of 50 mV s, at a rotation rate of
1600 rpm in an O,-saturated electrolyte.

2.4. Anion Exchange Membrane Fuel Cell Testing. In
order to illustrate the practical application in an anion
exchange membrane fuel cell (AEMFC), the Zn-TAL-100
electrocatalyst was prepared as a cathode following procedures
similar to our prior publications.””™>' The cathode and anode
were loaded to 1 mgy,/rar-1000 cm > and 0.6 mgPtRu cm ™2,
respectively, while a high-density polyethylene (HDPE) based
AEM was utilized. The AEMFC was tested in a Scribner
Associates 8S0E test station operated at a cell temperature of
60 °C, with an cathode humidifier temperature set at 564 °C
and a anode humidifier temperature at 54 °C. The gas flow
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Figure 2. Scanning electron microscopy images (secondary electrons imaging mode) of Zn-TAL samples pyrolyzed at different temperatures (700,

800, 900, 1000 °C).
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Figure 3. (a) X-ray diffraction patterns, (b) pore size distribution, and (inset) N, sorption isotherms of Zn-TAL-700, Zn-TAL-800, Zn-TAL-900,

and Zn-TAL-1000.

rates for both oxygen and hydrogen were maintained at 1
standard liter per minute (SLPM), with a back-pressure of 100
kPag. The polarization curve was obtained by scanning from
open-circuit voltage (OCV) of ~1—0.1 V at a scan rate of 10
mV s\,

3. RESULTS AND DISCUSSION

3.1. Physicochemical Characterization. The selection of
an appropriate ligand is critical for the design of catalyst
precursors, as the ligand plays a crucial role in influencing the
catalytic activity, selectivity, and stability of the resulting
catalyst.'®** In this study, 1H-benzo[d]imidazole-5,6-diol was
chosen for its carbon and nitrogen-rich composition and its
additional functional groups, which enhance its multidirec-
tional ligating capabilities. Before pyrolysis, the structure of the

15283

Zn-TAL raw consisted of well-defined hollow, porous particles,
as shown in the SEM images (Figure Sla, Supporting
Information).

To better understand Zn-TAL behavior during pyrolysis,
thermogravimetric analysis was conducted under conditions
that mimic the pyrolysis process (Figure S1b). The TGA
results revealed an initial weight loss between 0 and 160 °C,
corresponding to the evaporation of water and residual
solvents. As the temperature increased further, additional
weight loss was observed between 160 and 600 °C, which is
attributed to the decomposition of the organic components of
the Zn-TAL. Around 650 °C, the weight loss was associated
with the evaporation of clustered Zn particles, consistent with
previous findings.”” The mass of the Zn-TAL sample

https://doi.org/10.1021/acsomega.4c11318
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Table 1. Textural Properties of Zn-TAL-Based Zn—N—C Materials

electrocatalyst Sper (m? g7) Sper (m* g7') Vige (em® g71) v, (em® g!)
Zn-TAL-700 103 100 0.17 0.03
Zn-TAL-800 414 475 0.40 0.14
Zn-TAL-900 584 718 0.37 0.23
Zn-TAL-1000 615 746 0.40 0.24
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Figure 4. (a) The XPS survey spectra obtained for Zn-TAL derived electrocatalysts; (b) the bar plot of the different types of nitrogen species and
their atomic weight percentage; (c) Deconvoluted Zn 2p XPS spectra for Zn-TAL derived electrocatalysts.

continued to decline beyond 650 °C, without stabilizing at any
plateau, indicating ongoing thermal decomposition.

SEM studies confirmed that the nonpyrolyzed Zn-TAL raw
exhibited the largest hollow spheres, averaging 140—160 nm in
diameter, as shown in Figure Sla. As the temperature
increases, the hollow spheres in Zn-MOF-700 shrink slightly
to approximately 100—120 nm (Figure 2). Continued heating
results in a further size reduction, with hollow spheres
measuring between 60 and 100 nm. Notably, even at elevated
temperatures, the carbon framework maintains its structural
integrity. The only changes observed are in the dimensions of
the hollow spheres, which remain free of visible Zn metal
aggregates, which is consistent with the PXRD findings.

The corresponding energy dispersive spectroscopy (EDS)
mapping results (Tables S1 and S2) clearly demonstrate the
presence of zinc, oxygen, nitrogen and carbon elements on the
surface of Zn-TAL materials. As the pyrolysis temperature
increased, the surface content of Zn diminished significantly,
decreasing from 3.87 at. % in the nonpyrolyzed Zn-TAL raw to
0.20 at. % in the sample treated at 1000 °C. This trend aligns
with findings from the literature, which indicate that during
high-temperature pyrolysis, Zn-based MOFs can convert to
carbon materials with minimal residual metal due to the
relatively low evaporation temperature of Zn. Correspondingly,
the carbon content increased from 71.44 at. % in the
nonpyrolyzed state to 94.65 at. % after pyrolysis at 1000 °C.

X-ray diffraction (XRD) analysis was conducted to
investigate the composition and crystallographic structure of
the electrocatalyst materials. The XRD patterns (Figure 3a)
confirmed that all four pyrolyzed samples predominantly
consisted of amorphous carbon, with no detectable peaks
corresponding to residual Zn compounds. Despite this, some
Zn likely remains in the materials, presumably coordinated
with nitrogen in an atomically dispersed form. The peaks
observed at 26.2° and 44.2° are attributed to the diffraction of
the (002) and (100) planes of the graphite phase (PDF 01-
077-7164).>%>° The carbon peak positions remained consistent
across all samples, while their intensities systematically varied
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with temperature. As the pyrolysis temperature increased, the
intensity of the (100) peaks slightly increased, indicating
improved crystallinity and structural ordering, consistent with
previous studies. In contrast, the intensity of the (002) peaks
decreased with rising temperatures, suggesting a reduction in
crystallite size or a possible phase transformation within the
carbon structure due to thermal treatment.

To evaluate the specific surface area and pore size
distribution of the synthesized electrocatalysts, N, physisorp-
tion analysis was performed (Figure 3b). All samples exhibited
typical Type-IV isotherms, accompanied by a Type H4
hysteresis loop in the relative pressure range of P/P, > 0.4,
indicating the coexistence of micro- and mesopores (inset to
Figure 3b).’® The isotherms demonstrated a rapid increase at
low relative pressures with increasing pyrolysis temperatures.
Further analysis of the pore size distribution curves confirmed
that the electrocatalysts were primarily composed of micro-
pores and mesopores, with most mesopores having diameters
ranging from 3 to 3.5 nm. Zinc serves as a morphology-
controlling agent during pyrolysis,””** and as the temperature
increases, the specific surface area of the material significantly
enhances from 100 to 746 m* g~'. This increase in porosity
results in a higher proportion of electrochemically active sites,
which further improves the ORR activity of the electro-
catalysts. Key parameters, including specific surface area
(Spgr), micropore volume (V,), and total pore volume (V)
for the Zn-TAL-derived electrocatalysts, were calculated and
are summarized in Table 1.

X-ray photoelectron spectroscopy was conducted to
investigate the surface elemental composition of the synthe-
sized electrocatalysts. The XPS survey spectra (Figure 4a)
confirmed the presence of carbon, nitrogen, oxygen, and Zn in
all the electrocatalysts, indicating that Zn was not fully
evaporated during pyrolysis. The surface atomic concentrations
of the elements are summarized in Table 2. As the pyrolysis
temperature increased from 700 to 1000 °C, the Zn content
decreased significantly from 9.53 to 0.44 at. %, suggesting
progressive evaporation of Zn at higher temperatures.
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Table 2. Surface Elemental Composition of Zn-TAL-
Derived Electrocatalysts (at. %) Obtained From XPS
Analysis

electrocatalyst C N (0] Cl Zn
Zn-TAL-700 68.52 15.39 53 1.25 9.53
Zn-TAL-800 76.66 12.82 4.42 0.42 5.68
Zn-TAL-900 85.54 8.38 3.53 0 2.55
Zn-TAL-1000 94.37 2.96 222 0 0.44

Additionally, chlorine residues from the synthesis process were
detected in the samples pyrolyzed at 700 and 800 °C, but were
completely removed after pyrolysis at 900 and 1000 °C. The
oxygen and nitrogen content decreased progressively during
pyrolysis. Meanwhile, the carbon content displayed a clear
upward trend with increasing pyrolysis temperatures, reflecting
a growing abundance of carbon-containing species. In the Zn-
TAL-1000 sample, the surface contained the highest
proportion of carbon (94.37 at. %), suggesting a higher degree
of graphitization, which may enhance the stability of the
electrocatalyst. The deconvoluted high-resolution XPS spectra
in the C 1s region (Figure S2, Table S3) revealed various
carbon species, including C—C (283.5 eV), C—O (285.8 eV),
C=0 (290 eV, 288 eV), C=C (283.7 eV), C—C/C=C,
carbide (282.6 eV), and 7—7* (291.5 eV).”” C—C and C=C
species indicate the presence of graphitic and sp*-hybridized
carbon structures, which contribute to enhanced electrical

conductivity and structural stability. The increased graphitiza-
tion at higher pyrolysis temperatures improves electron
transport.

The deconvolution of high-resolution XPS spectra in the N
Is region revealed multiple nitrogen species, including
pyridinic (398.3 eV), pyrrolic (400.6 eV), graphitic (401.8
eV), oxidized (403.7 eV), and metal-coordinated nitrogen
(M-N,) groups (399.6 V) as summarized in Figures 4b and
S4. At higher pyrolysis temperatures, the structural and
chemical composition of the carbon matrix undergoes
significant transformation, as confirmed by both XRD and
XPS analyses. The observed increase in the (100) peak
intensity in XRD suggests improved structural ordering,
indicative of graphitization. This is further supported by XPS
data, which reveals a concurrent rise in graphitic nitrogen
content. The incorporation of nitrogen into the carbon lattice
in a graphitic configuration enhances electronic conductivity
and structural stability, contributing to increased crystallinity.
Additionally, the presence of pyrrolic nitrogen at elevated
temperatures suggests the retention of edge defects and
functionalities, which may facilitate active site exposure for
catalytic applications. The decrease in the (002) peak intensity,
often associated with layer stacking disruptions, aligns with the
nitrogen doping effect, which can introduce disorder while
simultaneously promoting a more open and accessible carbon
framework.
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Figure 6. (a) Comparison of ORR polarization curves recorded for all Zn-TAL-derived samples and commercial Pt/C in O,-saturated 0.1 M KOH
at 1600 rpm; (b) ORR Tafel plots derived from the RDE data; (c) ORR polarization curves recorded for Zn-TAL-1000 at different electrode
rotation rates; (d) Koutecky—Levich plots constructed from RDE data on Zn-TAL-1000 (inset: number of electrons transferred (n)); (e) the
charging current densities plotted against the scan rates for all studied Zn-TAL samples; (f) ORR polarization curves recorded for Zn-TAL-100
before and after 5000 cycles from 0.6 to 1.0 V vs RHE in O,-saturated KOH, 10 mV s, @ = 1600 rpm.

A peak at 398.95 eV, corresponding to M—N,, species, was
observed only in samples pyrolyzed at 700, 800, and 1000 °C.
Notably, the surface concentration of M—N,, species decreased
significantly from 1.7% at lower temperatures to just 0.04% at
1000 °C. At 700 and 800 °C, pyridinic nitrogen was the
dominant species, making up about 56% of the total nitrogen
content. However, after pyrolysis at 1000 °C, the proportion of
pyridinic nitrogen dropped to 31%, while pyrrolic nitrogen
increased from 22 to 39%. Mostly pyridinic, and M—N,
moieties are well-recognized for their role as highly active
sites for ORR, contributing directly to the enhanced catalytic
performance.®’
pyridinic and graphitic nitrogen account for approximately
50% and 30%, respectively, of the active nitrogen sites involved
in the ORR.>>°"

Interestingly, for the Zn-TAL-900 sample, no apparent Zn—
N, species were observed despite the presence of 2.55 at. % Zn.
One possible explanation is that at 900 °C, Zn atoms may be
primarily present as ZnO or Zn oxynitride species (Zn—O—N)
rather than Zn—N,. This is supported by the highest content of

Furthermore, it has been reported that

15286

NO-related nitrogen species observed in the deconvoluted
XPS spectra for Zn-TAL-900. Given that Zn can interact with
oxygen even under nominally inert conditions due to residual
oxygen or defects in the carbon matrix, it is plausible that Zn
becomes incorporated into Zn—O species instead of forming
Zn—N, coordination. Furthermore, 900 °C may represent a
transition temperature where Zn—N, sites begin to destabilize,
leading to the formation of more oxidized Zn species before
significant Zn evaporation occurs at 1000 °C. At this stage, Zn
may be trapped in oxide-rich domains or weakly bound to the
carbon framework, making Zn—N,, coordination less detectable
in XPS deconvolution.

Additionally, the distinctive peaks in high-resolution Zn 2p
spectra, appearing at 1021.9 for 2p;,, and at 104S eV for 2p, )
electronic configurations of Zn atoms, exhibit a characteristic
spin—orbit splitting of approximately 23 eV (Figure 4c). As the
pyrolysis temperature rises, the surface atomic concentration of
Zn 2p species decreases, confirming the evaporation of metal
species. This trend aligns with the bulk Zn content measured
by microwave plasma-atomic emission spectroscopy (MP-
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Table 3. Main Electrokinetic Parameters Obtained for Zn—N—C and Pt/C Samples

electrocatalyst E,/, (V vs RHE) E,, (V vs RHE)
Zn-TAL-700 0.64 0.76
Zn-TAL-800 0.73 0.82
Zn-TAL-900 0.79 0.89
Zn-TAL-1000 0.84 0.98
Pt/C 0.85 0.98

n

1.12
2.37
2.46
3.45
4.00

Tafel slope (mV dec™) Cy (mF cm™) ECSA (cm?)
—64 0.5 12.5
-53 0.4 10
—=S51 2.1 52.5
-53 23 57.5
—61 N/A N/A

AES), which shows that Zn-TAL-1000 has the lowest Zn
concentration (0.23 wt %) compared to Zn-TAL-700, Zn-
TAL-800, and Zn-TAL-900, which contain 1.43, 1.10, and 0.58
wt % of Zn, respectively. The decline in Zn content with
increasing pyrolysis temperature is consistently observed across
EDS, XPS, and MP-AES analyses, each reflecting different
detection depths. EDS and XPS confirm significant Zn
evaporation, while MP-AES further supports this trend,
showing the lowest Zn concentration in the highest-temper-
ature sample.

3.2. Electrochemical Characterization. The ORR
electrocatalytic behavior of all prepared electrocatalysts was
studied and compared with commercial Pt/C. First, cyclic
voltammetry experiments were conducted in 0.1 M KOH
solution with either Ar or O, saturation at a scan rate of 10 mV
s™'. As seen from Figure S, all four electrocatalysts showed
distinguishable reduction current peaks in an O,-saturated
electrolyte. As the pyrolysis temperature increased from 700 to
1000 °C, the reduction peak progressively shifted to 0.84 V vs
RHE, indicating an enhancement in electrocatalytic perform-
ance with increasing pyrolysis temperature. To gain a deeper
understanding of the specific activity of the prepared catalysts,
their electrochemical active surface area (ECSA) was
evaluated. This was achieved by cycling the samples in an
Ar-saturated electrolyte at scan rates of 40, 80, 120, 160, and
200 mV s~ to measure the electrochemical double-layer
capacitance (Cy) (Figure SS). Cathodic and anodic current
densities were recorded at non-Faradaic potentials, specifically
within the range of 0.92—1.00 V vs RHE. The extracted Cy
values were plotted against the corresponding scan rates
(Figure 6e), with the slope of the fitted trendline representing
the Cg. The ECSA of the electrocatalysts was calculated using
the equation

ECSA = Cy/C,

where C; is the specific capacitance of the electrocatalyst. For
the all TAL-derived materials, a C, value of 0.040 mF cm™ was
used, based on reported values.””"** Among the synthesized
materials, Zn-TAL-1000 exhibited the highest ECSA (57.5
cm?) followed by Zn-TAL-900 (52.5 cm?), Zn-TAL-700 (12.5
cm?), and Zn-TAL-800 (10 cm?). The superior ECSA of Zn-
TAL-1000 indicates greater exposure of active sites to the
electrolyte, which can be attributed to its highly porous
structure.

The rotating disk electrode technique was used to assess the
ORR activity of the synthesized electrocatalyst materials and
benchmark them against commercial Pt/C. As shown in Figure
6a, Zn-TAL-1000 demonstrated the highest onset potential
(Eon) of 098 V and a half-wave potential (E,/,) of 0.84 V,
which is only 10 mV lower than that of Pt/C (0.85 V vs RHE).
The Tafel slope values derived from the RDE data (Figure 6b)
were similar to that of Pt/C (61 mV dec™"), indicating that Zn-
TAL samples exhibit improved ORR kinetics.”> Additionally,
Zn-TAL-1000 displayed a diffusion-limiting current density
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(Ju) of 5.15 mA cm™? further demonstrating its effective
catalytic performance.

Figure 6¢ displays the RDE curves recorded for Zn-TAL-
1000 at different rotation rates (@) ranging from 620 to 2025
rpm, allowing for obtaining the Koutecky—Levich (K—L) plots
(Figure 6d). The K—L plots at different potentials exhibit a
strong linear relationship, indicating first-order ORR kinetics
over the oxygen concentration in electrolyte across all
electrocatalysts. The electron transfer number (n) for Zn-
TAL-1000 was calculated to be around 3.5, close to the 4.0
value observed for Pt/C, suggesting that Zn-TAL-1000
predominantly follows a four-electron pathway during ORR.
A comprehensive summary of all calculated kinetic parameters
for each of the studied samples is provided in Table 3, with a
comparative analysis of these parameters against Zn—N-—C
materials reported in the literature available in Supporting
Information Table SS.

Based on the above discussion, it can be concluded that the
promising ORR activity of Zn-TAL-1000 results from a
combination of such factors as the incorporation of N-doped
carbon and the presence of atomically dispersed Zn, which
enhances the intrinsic reactivity for ORR. The hierarchical
porosity, large surface area, and high pore volume of Zn-TAL-
1000 material offer abundant accessible active sites and
improve mass transport during the ORR.

The active site identification for ORR in Zn-TAL-derived
catalysts is based on the synergistic roles of nitrogen species
and Zn coordination. The XPS analysis indicates the presence
of pyridinic, pyrrolic, and graphitic nitrogen in all pyrolyzed
samples, which are well-recognized as active sites for ORR,
particularly pyridinic nitrogen due to its ability to facilitate
oxygen adsorption and electron transfer.”*”*’ Regarding the
role of Zn, there is growing evidence that Zn can play an active
role beyond being a structural template. Studies have shown
that atomically dispersed Zn—N, sites can contribute to ORR
activity, exhibiting catalytic behavior comparable to Fe—N—C
catalysts."®”° For example, Zn—N, coordination environments
have been reported to facilitate oxygen adsorption while
maintaining high durability, particularly in alkaline media.”’
Furthermore, recent studies indicate that Zn single-atom sites,
especially when coordinated with nitrogen and oxygen ligands
(Zn—N,—0), can exhibit enhanced catalytic activity by
optimizing the adsorption strength of *OH and reducing the
energy barrier of the rate-determining step.'® In Zn-TAL-1000
catalyst, the evaporation of Zn at high temperatures suggests
that Zn primarily acts as a template for forming the porous
hollow structure. As the pyrolysis temperature increases, the
specific surface area significantly enhances from 100 to 746 m*
g~'. This increase in porosity leads to a higher proportion of
electrochemically active sites, further improving the ORR
activity of the electrocatalysts. However, at lower pyrolysis
temperatures, a portion of Zn may remain coordinated with
nitrogen, contributing to the catalytic activity, as observed in
Zn—N,-based SACs.”” The highest NO content in Zn-TAL-
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900 suggests the possibility of Zn existing in the form of ZnO
or Zn—O-N coordination rather than Zn—N,, negatively
influencing ORR activity.”'

To assess the stability of Zn-TAL-1000, accelerated testing
was conducted in alkaline media, involving 5000 cycles from
0.6 to 1.0 V vs RHE at a scan rate of 50 mV s~ in an O,-
saturated electrolyte. Post-stability polarization measurements
(Figure 6f) confirmed that Zn-TAL-1000 retained significant
catalytic activity for the ORR following extensive potential
cycling, indicating resistance to electrochemical degradation
under these test conditions. This aligns well with the
theoretical study by Jin et al., which suggests that high binding
energies exceeding the cohesive energy of Zn, along with the
electron-withdrawing effect of N due to its higher electro-
negativity, reduce aggregation and stabilize Zn active sites in
the structure.

The performance of the Zn-TAL-1000 cathode electro-
catalyst was evaluated in an AEMFC operating at 60 °C, with
the results illustrated in Figure 7. When paired with a PtRu/C
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Figure 7. Polarization curve (empty symbols, Y1 axis) and power
density curve (filled symbols, Y2 axis) of an H,—O, AEMFC with Zn-
TAL-1000 ORR cathode electrocatalyst. Test conditions: cathode and
anode loadings of 1 mgz,/rar1000 > and 0.6 mgpg, cm™ and,
respectively with an HDPE-based AEM. Cell temperature of 60 °C,
cathode humidifier temperature of 56 °C and anode humidifier
temperature of 54 °C and for O, and H,, respectively with flow rates
of 1 SLPM and back-pressure of 100 kPag for both electrodes.

anode, the AEMFC utilizing the Zn-TAL-1000 cathode
achieved a peak power density of 553 mW cm™ and a
limiting current density of approximately 1500 mA cm™2.
These results suggest that the Zn-TAL-1000 electrocatalyst
may enhance the electrochemical performance of AEMFCs,
indicating its potential relevance for further exploration in
energy conversion applications.

4. CONCLUSIONS

In summary, a Zn—N—-C electrocatalyst was successfully
synthesized from the Zn-TAL MOF using an optimized
pyrolysis process that preserved the hollow, porous structure
essential for catalytic performance. This structure, verified by
SEM and XRD analyses, remained stable at elevated
temperatures without Zn aggregation. Electrochemical tests,
including cyclic voltammetry and rotating disk electrode
measurements, showed that Zn-TAL-1000 has a high onset
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potential (0.98 V) and a half-wave potential (E,/,) of 0.84 V,
closely matching the performance of commercial Pt/C.
Additionally, RDE results confirmed that Zn-TAL-1000
predominantly follows a four-electron ORR pathway, with an
electron transfer number of 3.45. Accelerated stability testing
demonstrated strong resistance to electrochemical degradation,
with Zn-TAL-1000 maintaining significant ORR activity after
5000 cycles in alkaline media. Furthermore, in an anion-
exchange membrane fuel cell, the Zn—N—C material pyrolyzed
at 1000 °C exhibited a peak power density of 553 mW cm™ at
60 °C. This work establishes Zn-TAL-derived Zn—N—C as a
promising, cost-effective Pt-free electrocatalyst for fuel cell
applications. Zn-TAL MOF is a versatile precursor for Zn—N—
C electrocatalysts; however, it can also serve as a promising
platform for developing advanced electrocatalysts. Its unique
hollow sphere structure and rich carbon and nitrogen content
enhance the incorporation of transition metal species, leading
to improved performance in electrochemical devices such as
metal-air batteries and fuel cells.
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