
Academic Editors: Wenluan Zhang,

Yumin Huang and Pan Liu

Received: 12 February 2025

Revised: 8 March 2025

Accepted: 10 March 2025

Published: 17 March 2025

Citation: Bolesta, I.; Kushnir, O.;

Karbovnyk, I.; Klym, H.; Konuhova,

M.; Popov, A.I. Topological and

Fractal Analysis of Nanostructured

Metal–Dielectric Films. Appl. Sci. 2025,

15, 3250. https://doi.org/10.3390/

app15063250

Copyright: © 2025 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/

licenses/by/4.0/).

Article

Topological and Fractal Analysis of Nanostructured
Metal–Dielectric Films
Ivan Bolesta 1 , Oleksii Kushnir 1 , Ivan Karbovnyk 1, Halyna Klym 2,*, Marina Konuhova 3

and Anatoli I. Popov 3,*

1 Department of Radiophysics and Computer Technologies, Ivan Franko National University of Lviv, 107
Tarnavskogo Str., 79017 Lviv, Ukraine; ivan.bolesta@lnu.edu.ua (I.B.); oleksiy.kushnir@lnu.edu.ua (O.K.);
ivan.karbovnyk@lnu.edu.ua (I.K.)

2 Department of Specialized Computer Systems, Lviv Polytechnic National University, 12 Bandera Str.,
79013 Lviv, Ukraine

3 Institute of Solid State Physics, University of Latvia, Kengaraga 8, LV-1063 Riga, Latvia;
marina.konuhova@cfi.lu.lv

* Correspondence: halyna.i.klym@lpnu.ua (H.K.); popov@latnet.lv (A.I.P.)

Abstract: The surface topology and fractal dimension of ultrathin silver and gold films
have been investigated utilizing atomic force microscopy. These films were formed at the
early stages of metal deposition through thermal evaporation and have pre-percolation
thicknesses. They contain both metallic and insulating (void) phases, making them
metal–dielectric composites. We identified the main parameters of the microstructure,
such as the size of the metallic particles and surface roughness, as well as the dependence
of these parameters on the film thickness and substrate parameters. Approaches to pro-
cessing data, including correlation analysis, were employed. An analysis of dependencies
and an explanation of their appearance were conducted. The discussion also addressed
the limitations of using atomic force microscopy for studying ultrathin metal films. We
determined the various types of fractal dimensions, considering the film topology for two-
as well as three-dimensional objects. Depending on the actual dimensions of the phase
boundary for silver films, a maximum was found. Different approaches to determining the
fractal dimensions in 3Ds case show a similar dependence, but different values.

Keywords: atomic force microscopy; thin films; topology; surface; nanostructures;
fractal; percolation

1. Introduction
The fast development of industry and technology demands the creation of increas-

ingly novel functional materials with unique properties [1–6]. A major area of emphasis for
researchers is the development of more efficient light-emitting or light-absorbing materi-
als [7,8]. Metal–dielectric composites with phases the size of nanometers show promise in
this regard [9,10]. These materials’ optical response is mostly determined by the metallic
phase characteristics, which means that the response can be controlled by varying the
corresponding parameters of metallic nanostructures [11–13]. It was demonstrated [14,15]
that the energy redistribution in such materials can lead to the amplification of local optical
fields. This effect is linked to the nascency of surface plasmon resonance in metallic nanopar-
ticles as a result of the conduction electrons oscillating inside them [16–18]. Significant
local field enhancement occurs in stochastic metal–dielectric structures with randomly dis-
tributed metallic nanoparticles of different sizes. A model example of such metal–dielectric
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nanostructures is thin metal films produced by thermal evaporation, with thicknesses
below the percolation threshold [19–21].

The stochastic creation of metal islands takes place during the initial phases of de-
position. The parameters of the structure are determined by the substrate’s quality and
temperature [22–24], its surfactant sublayers [25,26], and other factors [27–30]. From a
practical standpoint, island films of silver (Ag) and gold (Au) are very intriguing since the
frequency of the plasmon resonance in such structures falls within the visible and near-
ultraviolet ranges [31–34]. Due to the plasmonic effect, nanoparticles of these metals have
been applied in various ways, including in solar energy [35,36], in biomedical fields [37,38],
and in the creation of new materials [39,40], among others. Consequently, studying the
morphology and determining the integral structural parameters of ultrathin gold and silver
films is crucial as it directly affects the characteristics of the materials.

The purpose of this work is topological and fractal dimension analysis of ultrathin
silver and gold films with thicknesses below the percolation threshold using atomic force
microscopy (AFM). The study of surface evolution of films with increasing mass thickness
is the basis for determining a set of various parameters, including classical ones such
as roughness and grain size, as well as those based on correlation analysis. The probe’s
influence on the surface image’s quality and reliability is also thoroughly analyzed. Various
approaches are used in this work to determine the fractal dimensionality, among which the
metal film is considered as either a 2D or 3D object.

2. Materials and Methods
Ultrathin films of silver and gold were produced by the thermal evaporation of metal

in vacuum conditions at a pressure of 10−6 torr and a speed of 0.01. . . 0.02 nm/s. Substrates
from glass, maintained at a temperature of 290 K, were chosen for this process. Mass
thickness dm is an important practical parameter of the films, which corresponds to the
thickness of a solid, homogeneous metal layer of the same mass as the experimental film.
The bulk thickness dm of the films was controlled during sputtering using a quartz crystal
microbalance. For structural studies, a set of silver films with mass thicknesses between 1.0
and 6.0 nm, significantly below the percolation threshold of approximately 18 to 20 nm, was
deposited [41,42]. Gold films were fabricated within the thickness range of 1.0 to 3.0 nm, as
films with dm ≥ 5.0 nm transitioned into a percolating state. For some additional studies,
samples with larger mass thicknesses were also used, namely 10 nm and 17.8 nm for silver
and 4, 6, and 8 nm in the case of gold films. Silver and gold with a purity of 99.99%,
obtained from Sigma-Aldrich, were used for thermal evaporation. During metal deposition,
island structures are created, presenting with different characteristics depending on the
substrate and its temperature. These structures can be called metal–dielectric composites
with a fractal order [43].

Morphological analyses of the metallic film surfaces were performed using Solver
P47 PRO (NT-MDT) with NSG10 cantilevers possessing a tip curvature radius of 6–10 nm.
The studies were conducted in tapping mode, with a scan rate between 0.5 and 2 lines per
second (LPS) so as not to damage the surface of the film.

The initial processing and image reconstruction of the AFM data were performed
using Gwyddion [44], a freely available and open-source modular software suite under the
GNU General Public License. This software is specifically designed for the visualization
and analysis of data acquired via scanning probe microscopy (SPM) techniques. Python
3.11 scripts were used all further data processing and parameter determination, such as
roughness, particle size, and fractal dimensions. In addition to the implementation of our
own algorithms, the scripts also use the NumPy 2.1.0 and OpenCV 3.2 libraries. Gwyddion
2.67 was also used to visualize some resulting surfaces.
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3. Results and Discussion
The pre-percolation topology of Ag thin films formed on substrates (Figure 1) was

studied by atomic force microscopy. Figure 1d indicates the topology of the glass substrate
without the applied film. From the comparison of the topologies of the surface of glass and
films, it can be seen that the height difference of the glass surface is more than ten times
smaller than that corresponding to films, at 3.5 nm versus 35–40 nm. This is because, at
such magnifications, the glass has a slowly changing relief, and the inclusions that may
be in the glass are huge compared to the size of the silver particles that make up the film.
Therefore, for this experiment, the influence of substrate topology is negligible. The mass
thickness of the films (dm) was varied to study its effect on surface morphology. It was
found that ultrathin films consisted of aggregated metal nanoparticles, with their size
and shape being dependent on dm. This conclusion aligns with studies conducted using
similar methods to obtain metal films on glass substrates under similar conditions [45–49].
Notably, pre-percolation Au films exhibited qualitatively similar surface features to Ag
films (Figure 2), although with smaller nanoparticle dimensions.
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and 5.7 nm (c), and of the glass substrate without film (d) at dimensions of 2.0 × 2.0 μm. 
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and 5.7 nm (c), and of the glass substrate without film (d) at dimensions of 2.0 × 2.0 µm.
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Figure 2. AFM visuals of the Au films on substrates with thicknesses (dm) of 1.0 nm (a), 2.0 nm (b),
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It should be noted that the AFM image dimensions, shown in Figures 1 and 2, are
different. This is due to the significant size difference in surface inhomogeneities between
silver and gold films. These images are presented to illustrate the structural evolution with
the increasing mass thickness of the films. Most parameters were calculated using image
sets with different dimensions.

To quantitatively analyze the surface roughness, the root mean square (RMS) deviation
of the topography from a reference plane was calculated based on the AFM data. In the
case of two dimensions, this parameter represents the minimum RMS deviation and
characterizes the overall variation in the surface profile [50]:

Sq =

√
∑N

i=1(Zi − Zc)
2

N
, (1)

where Zi is the point height, Zc is the average surface height, and N signifies the total
number of points considered on the surface for calculation.

Figure 3 illustrates how the surface roughness depends on the thickness of the
films studied.

Appl. Sci. 2025, 15, x FOR PEER REVIEW 4 of 19 
 

   
(a) (b) (c) 

Figure 2. AFM visuals of the Au films on substrates with thicknesses (dm) of 1.0 nm (a), 2.0 nm (b), 
and 3.0 nm (c) at dimensions of 0.2 × 0.2 μm. 

To quantitatively analyze the surface roughness, the root mean square (RMS) devia-
tion of the topography from a reference plane was calculated based on the AFM data. In 
the case of two dimensions, this parameter represents the minimum RMS deviation and 
characterizes the overall variation in the surface profile [50]: 

𝑆௤ = ඨ∑ ሺ𝑍௜  − 𝑍௖ሻଶே௜ୀଵ 𝑁 , (1) 

where Zi is the point height, Zс is the average surface height, and N signifies the total 
number of points considered on the surface for calculation. 

Figure 3 illustrates how the surface roughness depends on the thickness of the films 
studied. 

Further analysis of AFM and the objectivity of the parameters that can be obtained 
with its help is required to understand the reasons for the dependence of RMS on the mass 
thickness of metal films. Atomic force microscopy is a useful instrument for studying sur-
face topology at the nanoscale [51–53]. The positioning of the probe system relative to the 
sample enables a fairly accurate reproduction of the surface profile. However, in nano-
physics, the objects under study have sizes of tens of nanometers. In this case, the limited 
size of the scanning probe is a significant drawback and introduces considerable errors in 
the measurement results [51,52]. 

1 2 3 4 5 6

2.6
2.8
3.0
3.2
3.4
3.6
3.8
4.0
4.2
4.4
4.6

S q,n
m

dm,nm  
1 2 3 4 5 6

1.0

1.2

1.4

1.6

1.8

2.0
 

S q,n
m

dm,nm  
(a) (b) 

Figure 3. The dependence of the surface roughness of Ag (a) and Au (b) films deposited on sub-
strates (depicted on Figure 1d) on mass thickness. Circles—calculated values, red line—linear fit-
ting. 
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Further analysis of AFM and the objectivity of the parameters that can be obtained
with its help is required to understand the reasons for the dependence of RMS on the mass
thickness of metal films. Atomic force microscopy is a useful instrument for studying
surface topology at the nanoscale [51–53]. The positioning of the probe system relative
to the sample enables a fairly accurate reproduction of the surface profile. However, in
nanophysics, the objects under study have sizes of tens of nanometers. In this case, the
limited size of the scanning probe is a significant drawback and introduces considerable
errors in the measurement results [51,52].

According to the principles of operation of a scanning microscope, the signal obtained
when scanning a line is a convolution of the surface shapes and the scanning element. It is
widely known that mathematically each point of an AFM image can be represented as a
part of the convolution of the surface relief signals, f (x,y), and the probe shape, p(x,y) [54]:

g(x, y) =
x∫

0

y∫
0

f (ξ, η)p(x − ξ, y − η)dξdη. (2)
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When using an atomic force microscope in contact or semi-contact scanning modes,
the condition of the minimum distance of the probe from the examined surface will be
fulfilled. Mathematically, this condition is written as follows [54]:

p(x, y)− f (x, y) ≥ 0. (3)

Considering these two factors, a simple algorithm for modeling the AFM scanning
process was proposed for use if the shape of the probe p(x,y) and the relief of the real surface
f (x,y) are known. This algorithm is carried out in one: (1) assume that the center of the
probe tip is positioned over a given point; (2) the initial height value at this point on the
new (modeled) surface is set to be the same as that on the real surface f (x,y); (3) find the
maximum difference p(x, y)− f (x, y) over the entire area of the probe with the center at
the given point; (4) if the obtained maximum difference is positive, the height value at this
point on the new surface g(x,y) is increased by the obtained difference value (Figure 4).
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Figure 4. Conceptual illustration of AFM scanning procedure. 1—f (x), the real shape of the surface;
2—p(x), the shape of the probe; 3—g(x), the resulting topology.

On the other hand, metal films in the initial stages of sputtering form islands, the
shapes of which can be roughly considered spheres or hemispheres depending on the
wetting level of the substrate surface by the metal, which, in turn, depends on various
thermodynamic parameters. As the amount of metal increases, the islands formed increase
in size, and the distance between them decreases, accordingly. Figure 5 is built by analogy
with the approach used for the formation of Figure 4. It schematically shows the formation
of an AFM image of two spheres in cases when the distance between them is greater
(Figure 5a) and less (Figure 5b) than the size of the scanning element. Condition (3) in
the case of Figure 4, a does not allow the probe to sink sufficiently to reach the surface
of the substrate. From Figure 5, it can be seen that the height h1 is smaller than h, and
since the distance between the particles decreases with the increase in mass thickness, the
roughness decreases.

The influence of the probe on the AFM visuals of island films is more pronounced at
the boundary between the 10 nm thick silver film and the glass substrate (Figure 6). To
produce these images, several series of experiments were conducted using a sharp tool with
a hardness lower than that of glass to scratch the samples’ surfaces. By scanning with a
gradual increase in scale, an area without debris and with a clear boundary was identified.
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Figure 6. A three-dimensional image of the transition boundary between the film and the substrate.

To obtain the image shown in Figure 6, a typical technique for processing AFM
data—polynomial background removal—was used. In this case, only the part of the
image corresponding to the substrate surface was applied as the basis for calculating the
surface parameters.

It is known that such a film is not yet conductive and consists of islands; however,
Figure 6 gives the impression that the film is continuous. This representation makes it
evident that during the scanning of the film, the probe does not reach the surface of the
substrate, but only slightly penetrates it. In this case, the size of the probe affects both the
RMS values determined from the AFM images and the estimation of the metal particle sizes.

In both regions depicted in Figure 6, heterogeneity and different surface roughness
values can be observed. These areas correspond to the silver film and the glass substrate;
direct thickness measurement is not feasible, however. To accurately estimate thickness
under these conditions, a height histogram was utilized (Figure 7). In this histogram,
the height h is plotted on the x-axis, and the point quantity in the AFM image at that
height is plotted on the y-axis. The histogram exhibits two distinct peaks. The left peak is
attributed to the substrate, whereas the right peak corresponds to the film surface. Both
surfaces exhibit Gaussian distributions, allowing these peaks to be fitted with Gaussian
peak functions to determine the positions of their centers, representing the most probable
height of the given area. The distance between the centers of these peaks corresponds to
the desired geometric thickness δ of the metal layer on the substrate.
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Figure 7. A histogram of the height distribution of image points (Figure 6) for the film–substrate
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This technique enabled the accurate estimation of the geometric thickness of the film,
contingent on identifying the transition limit. The digital processing of the AFM image in
the area where the boundary between the film surface and the substrate is visible allows
us to determine the spatial thickness of the film layer. Figure 8 illustrates the relationship
between the geometric thickness of silver films, as determined from a series of AFM
experiments, and their mass thickness.
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Figure 8. The dependence of the geometric thickness of the film dgeom on the mass thickness dm for
Ag films (symbols) and its fitting (red line).

In cases of small mass thicknesses, the difference between dgeom and dm is significant.
This discrepancy arises because, at the initial stages of deposition, separate metal clusters
form, resulting in large dgeom values. As the film thickness further increases, the difference
between them should decrease, and so the dependence Figure 8 has a nonlinear character.
With both the geometric thickness dgeom and the mass thickness dm known, determining
the filling factor p is straightforward. The packing factor, representing the position of the
film’s volume utilized by the metal, is computed as a ration of the mass thickness dm to the
geometric thickness dgeom obtained from AFM images. Figure 9 displays the relationship
between the filling factor of the metallic phase p and the mass thickness.
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glass substrate.

As expected, the filling factor increases nonlinearly with the increase in mass thickness
and asymptotically approaches a value of one for bulk samples.

A different approach was utilized to determine RMS and another surface parameter—the
correlation length. The two-dimensional autocorrelation function (ACF) serves as a valuable
tool for characterizing the statistical properties of a surface. For stationary surfaces, the
following relationship was calculated [55]:

C(x, y) =
1
S

∫
S

z
(

x′, y′
)
z
(
x′ + x, y′ + y

)
dx′dy′, (4)

where S is the scanning area and z(x,y) is the AFM topology height.
The following equation can be applied to numerically calculate the correlation

function [46]:
C(x, y) = F−1

[
F−1[z(x, y)]F[x, y]

]
, (5)

where the discrete Fourier transforms, both in reverse and direct, are denoted by F−1 and
F, respectively.

The correlation function for the Gaussian distribution is expressed as follows [55]:

C(x, y) = δ2e(−
x2+y2

σ2 ) (6)

where the parameter δ corresponds to the surface roughness, and σ is called the
correlation length.

Figures 10 and 11 depict the 2D autocorrelation functions of the surface topography
for the Ag and Au films studied, respectively. The intersection of these ACFs with the
y = 0 plane is also presented. The calculated ACFs reveal an anisotropic character in the
cross-sections. While isotropy in the xy-plane implies a symmetrical correlation function,
the observed anisotropy is likely caused by the elongated shape and, to some extent, the
preferential orientation of the metallic nanoparticles.
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x-direction (black line), with corresponding Gaussian fits (blue line) displayed, are included.
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Figure 11. The two-dimensional autocorrelation of the surface morphology of the studied Au films at
1.0 nm (a), 2.0 nm (b), and 3.0 nm (c) mass thicknesses. Additionally, vertical cross-sections along the
x-direction (black line), with corresponding Gaussian fits (red line) displayed, are included.

However, according to (2), the shape of the probe p(x) can affect the surface correlation
function’s anisotropy. To test this, the shape profiles of the probe tip were determined
by scanning a 17 nm high rectangular grating. Figure 12 shows the profiles obtained
when scanning at different angles, with a difference of 90 degrees. The difference between
the profiles cannot affect the anisotropy of the correlation function, as it is not essential.
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Consequently, the anisotropy of the correlation function leads to the conclusion of the
anisotropic morphology of nanoparticles.
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Figure 12. Probe tip profiles obtained by scanning 17 nm high rectangular grating at different angles.

The dependence of roughness (δ) and correlation length (σ) on mass thickness (dm)
demonstrates similar trends for both Ag and Au films. An increase in dm leads to an
expansion of the correlation length paired with a reduction in roughness. Notably, the
σ and δ values for Au films are consistently 2 to 2.5 times smaller compared to those
of Ag films. This disparity can be related to the intrinsically smaller dimension of the
Au particles.

The explanation for the decrease in roughness remains consistent, while the increase
in correlation length with the increase in mass thickness arises from the growth and merger
of metal nanoparticles. Evaluating roughness and conducting correlation analysis enable
the assessment of surface statistical characteristics. However, understanding the size of the
structural elements is also crucial.

On the other hand, information about the probe’s shape (Figure 12) makes it possible
to use the deconvolution method [51–53] to partially eliminate the effect that occurs due
to the probe’s finite size (Figure 4). This method, of course, does not make it possible to
completely eliminate the influence of the probe on the shape of the AFM surface, especially
in the case of Figure 5a. However, the deconvolution method effectively reduces the error
in determining the horizontal dimensions of objects. A change in the appearance of the
surface is presented for demonstration: the surface of an ideal sphere if the probe size
were infinitely small (Figure 13a), the sphere after the scanning process as in Figure 4
(Figure 13b), and the surface after using deconvolution (Figure 13c).
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Figure 13. The model of an ideal AFM surface of a sphere (a), the surface of a sphere modeled according
to the algorithm Figure 4 (b), and the appearance of the surface after using deconvolution (c).

The object size still has an error after using horizontal deconvolution, but it is much
closer to the values obtained by other, often more accurate methods [56]. Therefore, the
determination of particle sizes according to the following algorithms was carried out after
using the de-convolution method for the corresponding AFM images.
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The data underwent several processing stages to identify regions in the AFM image
corresponding to metal particles. The primary objective was to delineate the contours
of these particles. Initially, the image was segmented using the watershed method [57],
followed by automatic image thresholding using Otsu’s method [58], which was performed
on the resulting segments. Subsequently, contours were detected on the binary images
obtained. This approach helped mitigate errors arising from unstable height variations in
AFM images.

After identifying the boundaries of particles in the image, parameters describing their
shape and size were determined. The primary parameter is the region area S related to each
particle. The number N of image points enclosed by the contour was counted, yielding
S = N∆x∆y, where ∆x and ∆y are the discretization steps along the x and y axes, respectively.
From the area S, the equivalent diameter deq of the particle is derived. This is the diameter
of a circle whose area matches the particle’s area S, i.e., deq =

√
4S/π.

The height h of the particle is determined by finding the maximum zmax, and minimum
zmin, height values in the area where the particle appears on the image: h = zmax – zmin.

The length L is different in comparison with the maximum distance among two points
within the region, while width w is not necessarily the minimum distance between two
boundary points on opposite sides and is only accurate for convex regions. The same
approach was employed as in [59] to determine these parameters: a rectangle with the
minimum area enclosing the region was described, where the width of this rectangle was
taken as the width of the region, and the length of the rectangle was the length of the region.
This method also allows us to estimate the direction of the metal particle with respect to
the x-axis of the image, which corresponds to the orientation (angle φ) of the longer side of
the rectangle.

Figure 14a presents the dependencies of the mean (average) equivalent diameter (deq)
of films on the time of deposition at a rate of 0.0016 nm/s. Figure 14b shows the subjection
of the same deq parameter, but after it has affected the temperature of the substrate at a
constant dm. It was determined that the increase in deq with the rising deposition time t is
nearly linear during the initial deposition stages.
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Figure 14. Mean (average) particle diameter deq for Ag films formed on the substrate at constant T = 
293 K vs. deposition time (a) and at a constant thickness of dm = 6 nm, and the substrate temperature 
(b). 

Figure 14. Mean (average) particle diameter deq for Ag films formed on the substrate at constant T = 293 K
vs. deposition time (a) and at a constant thickness of dm = 6 nm, and the substrate temperature (b).

It is noticed that there is a linear relationship between the characteristic structure
size and the substrate temperature T. This trend can be attributed to the metal particle’s
enhanced thermal energy kT at higher temperatures. This increased energy facilitates
surface mobility, enabling particles to coalesce and form biggest clusters.
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It was demonstrated that, at a low thickness, the metal particle can be modeled in the
form of ellipsoids with the sizes of a = L, b = w, and c = 2h (L is the length, w is the width
of the area, h is the elevation above the watershed). The values obtained are displayed in
Table 1. Anisotropy in the xy plane is evident, as indicated by the significant difference
between the dimensions of the a and b axes and the uneven distribution of particles in
the visible region. This can be seen better when the particle distribution is along a certain
direction because anisotropy occurs when there is simultaneous particle elongation and
non-uniform distribution in the same direction.

Table 1. The averaged values of the axes of metal particles for silver films of different mass thicknesses
for different images of the same sample.

dm (±0.1), nm a (±2), nm b (±2), nm c (±1), nm

1.0 40 30 31
1.1 45 32 32
1.2 47 33 32
1.5 49 33 35
1.8 53 34 34

Combining methods to identify structural components and determine parameters
allows for the precise characterization of each particle’s geometry individually. The method
for defining the area surrounding each particle makes it possible to evaluate both its
geometric parameters and its alignment with the x and y axes along the rectangle’s longest
side. This enables the determination of mean values, as well as distributions for the
parameters obtained, given an adequate particle number in the collection of visuals for the
same sample.

Figure 15 displays the topography of the Ag film’s surface at 1.1 nm, with a colored
mask applied to the picture and dispensation by equivalent diameters and via the particle’s
direction. The angle φ amid the particle’s lateral axis and the positive orientation of the
x-axis specified the orientation of the particles.
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Figure 15. Marked metal particles on the AFM image of the Ag film surface dm = 1.1 nm (a),
distributions of the number of particles from the equivalent diameter (b), and the orientation of
longest side (c) in relation to the x-axis of the image.

The distribution of diameters (Figure 15b) shows a Gaussian shape, with a peak in
the region of the average diameter. A similar pattern is observed in different images of all
samples. The distribution of particle orientations is non-uniform, showing a significant
peak, while other orientations exhibit non-zero values. This observation confirms previous
findings of a partially uniform orientation of nanoparticles, deduced from the elliptical



Appl. Sci. 2025, 15, 3250 13 of 19

cross-section of the auto-correlative function. It is noteworthy this allocation is not typical
of all films and can be related to the production technology used.

The determination of the fractal dimensions of the studied films is crucial, as
metal–dielectric composites are well established to possess a fractal structure. In this
study, the fractal dimension, known as the Hausdorff dimension, was defined using the
box-counting method.

In a 2D context, the fractal dimension of metallic phase (Dp) can be differentiated from
the fractal dimension of the boundaries between the metal and dielectric (Db) using the box-
counting approach. When determining Dp, boxes cover the complete area corresponding to
the particles in the picture. A box is considered to cover the area if it contains at least one
pixel within the particle region. In contrast, when measuring Db, only the boxes intersected
by the particle’s boundary are considered. This means each box must contain a minimum
of one pixel on the boundary line.

Figures 16 and 17 depict the dependencies of the 2D fractal dimensions Dp for the
metal phase Db and for the metal–dielectric boundaries of silver and gold films deposited
on the substrate as a function of mass thickness.
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The fractal dimension Dp of the metallic phase of both Ag and Au films demonstrates
a positive correlation with rising mass thickness. Such a trend can be related to the growing
metal content as the film thickness increases, leading to more extensive metal phase filling
of the surface.

In contrast, the fractal dimension of the metal–dielectric boundary Db exhibits a
distinct peak at dm ≈ 3 nm in the case of Ag films. Such behavior can be elucidated by
the elongation of the boundary, given that the metal concentration is amplified during the
initial stages of deposition. When areas of metal and dielectric parts are proportionally
balanced (with a metal filling p ≈ 0.5), the boundary length reaches its maximum value.
With further increases in mass thickness, the boundary length decreases.

In contrast, there is no distinct peak in the Db dependence in the case of Au films
(Figure 17b), and the dependence on Db by dm has a decreasing character over the entire
range. This suggests that the metal concentration in the studied films exceeds the critical
level, which would maximize the boundary length.

In the three-dimensional case, the film surface is described by a height function
z(x, y). Then, the fractal dimension can be determined by covering the surface with three-
dimensional boxes. However, the correlation dimension is more commonly considered for
such analysis.

The Wiener–Khinchin theorem [60] establishes a link between the autocorrelation
function and the spectral power density. This connection allows us to infer the frac-
tal nature of the surface topography from its power spectrum. Reference [61] demon-
strates that the power spectrum of a fractal surface follows a power–law relationship for
spatial frequencies:

S(νx) =
Kα

να
x

, (7)

where Kα represents the spectral strength and α signifies the spectral index. These pa-
rameters are considered fractal characteristics that define surface roughness in the spatial
frequency domain. As evident from the equation, the value of α can be determined from
the slope observed in a double logarithmic representation of the power spectrum.

The Blackman–Tuke method [62] is employed to calculate the power spectrum in one
dimension as a function of spatial frequencies, as presented in Figure 18 using a double
logarithmic scale. The spatial index α was obtained as 2.52 by fitting these data with a
linear model (solid curve).
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The relationship between the α and H is provided by α = 2H + 1 [63]. Furthermore,
the correlation fractal irregularity Dc is associated with the fractal co-dimension by the
equation Dc = 3 − H [61].

Figure 19 depicts dependencies of the Hausdorff fractal dimension (DH), assessed
using the box-counting approach, as well as correlation dimension (Dc) on mass thickness
for both Ag and Au films. Each data point represents the average value calculated from
the smallest five AFM visuals of the corresponding samples. It was shown that the Dc

consistently remained lower than DH (Dc < DH) for both Ag and Au films within the
investigated thickness range. It is noteworthy that the rate of change of these fractal
dimensions changes as the thickness of the mass increases. In the case of Ag films, the
increase is 0.028 nm−1 for DH and 0.008 nm−1 for Dc. Similarly, Au films exhibit an increase
of 0.047 nm−1 for DH and 0.027 nm−1 for Dc.
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The observed inequality (Dc < DH) arises from the inherent definitions of these dimen-
sions. The correlation dimension is defined by the following equation [61]:

D q = lim
r→0

1
q − 1

ln ∑k pq
k

ln r
,−∞ ≤ q ≤ ∞ (8)

where the summation extends over all boxes of size r that partition the space, and pk

represents the probability of particle fractal structure occupying to the k box. When q
approaches zero (q → 0), this equation reduces to the dimension determined by the box-
counting approach (Hausdorff dimension). In this case, boxes with at least one fractal point
are considered during the summation.

Studied correlation dimension relates to a specific value of q equal 2 (Dc = D2). Due
to Dq ≥ Dq′ for q′ ≥ q of multiple distinct fractal dimensions, (DH and Dc) signify the
multifractal nature of the ultrathin film structures.

4. Conclusions
Pre-percolation silver and gold films, formed by thermal evaporation at the initial

deposition stages, consist of discrete metal particles. AFM effectively studies the topology
of these structures, but significant errors occur as films approach percolation, where the
distances between metal particles become smaller than the probe tip size. A decrease in
surface roughness indicates this and is further supported by examining the film–substrate
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border. For much thinner films, such errors are negligible, making AFM-determined
parameters reliable. The average particle sizes for silver films with a mass thickness of up
to 2 nm range from 30 to 60 nm.

Correlation analysis of film topologies provides further insights into structures. The
increase in correlation length with mass thickness and the anisotropy of the central peak of
the autocorrelation function indicate growth in the size of surface inhomogeneities (metal
particles) and some heterogeneity in their shape and size.

Detailed analysis of the size and shape of silver particles for films with a mass thickness
from 1 to 2 nm, performed using image processing, indicates that mainly elliptical particles
are formed. The average length and width of these particles increase with the growth of
mass thickness, ranging from 43 to 56 nm and from 31 to 36 nm, respectively. Studies also
reveal that particle size increases with the substrate temperature during metal deposition.
This could be due to the faster crystallization of the metal at lower temperatures, leading to
the creation of larger amounts of smaller particles.

The different approaches used in this study to determine fractal dimensionality gen-
erally yield predictable results. The fractal dimensionality of the metallic phase asymp-
totically approaches 2 with increasing mass thickness. However, the peak in the fractal
dimensionality of the boundary at dm~3 nm can indicate a maximum in the boundary
length between metal and voids, suggesting that there is a metal filling factor of around
0.5 at this thickness. Contrarily, based on the film–substrate boundary examination, the
metal filling factor should be 0.5 at approximately dm~7 nm. This discrepancy is likely due
to errors introduced by the AFM probe.
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